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The major achievement of this first semiannum was the significant revision and
extension of the Recursive Auto-Associative Memory (RAAM) work for publication in
the journal Arrificial Intelligence. Included as an appendix to this report, the article
includes several new elements: '

1) Background — ( (a@rswy

The work was more clearly set into the area iﬂ'@sﬁuted representations, machine
learning, and the adequacy of the connectionist approach for high-level cognitive
modeling)'
2) New Experiment—
RAAM was applied to finding compact representations for sequences of letters,
3) Analysis ——
The developed representations were analyzed as features which range from categor-
ical to distinctive. Categorical features distinguish between conceptual categories
while distinctive features vary within categories and discriminate or label the
members. The representations were also analyzed geometrically) A {\/)

]

4) Applications —
Feasibility studies were performed and described on inference by association, and
on using RAAM-generated patterns along with cascaded networks for natural
language parsing. Both of these remain long-term goals of the project. ™\

There are several other areas that are currently being explored, and whic}\ should be
written up in the second semiannum: '

Discrete Analog Systems
One problem for most recurrent or sequential work ip connectionism is the default
assumption of real arithmetic implemented in floating point. This means that states
(or internal representations) are yery i’?nf[:)recise, as there is no equality test. We have
been experimenting with -afi activation function based upon the inverse of Cantor's
function, shown below, which is a sigmoid-shaped step-function. and have bega—
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able to use standard neural network learning algorithms with it, One result so far is a
RAAM which exactly reconstructs its trees.

1.8—7

¢ 767

-1e0

Figure 1. Cantor’s sigmoid

Inductive Inference
J. Feldman set out (on an electronic bulletin board) the problem of inductive infer-
ence of finite state automata from language examples as a possible benchmark for
connectionist networks. This is now a very active area, with research ongoing at
CMU, Toronto, and UMass. Sequential Cascaded Networks had already shown
some promise in this area, on the parity and balanced parenthesis languages. With a
simple modification, they have worked on more complex test cases (from a 1982
paper by M. Tomita).

Chaotic Behavior
One of problems that plague modern connectionist learning algorithms is that gra-
dient descent is susceptible to local minima. This has been discounted by the origi-
nators of Back-Propagation, but it is generally known that "sometimes it converges
and sometimes it doesn’t.” It is also known that if all weights start at O, or any other
constant, the networks won’t converge. The default inital condition for the tech-
nique has thus been to start with small random weights. In the first part of Kolen &
Goel’s paper, they show that if the weights aren’t small, a large percentage of initial
conditions lead to non-convergence. We have examined this question in more detail,
by slowly varying the initial conditions to a back-propagation network, and show
that, in fact, it is quite sensitive! This chaotic behavior shows up in the image
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below, a 2-dimensional cut of the 7-dimensional initial weight space for the
Exclusive-or network, where convergent (within 2000 iterations) and non-
convergent conditions show up in black and white.

Figure 2. Strange behavior of back-propagation near boundary between convergent and
non-convergent initial conditions.

Large Scale RAAM

Finally, Kolen & I have begun a larger scale study of RAAM. This work is begin-
ning to answer two major questions about our default RAAM assumptions. The
first question regards the origin of tree structures; if the world is presenting
sequences (as in speech), what information processing principle (as opposed to
linguistic theory) requires the construction of hierarchal representations (such as
phonemes, syllables, and parse trees)? We are using direct statistical measurements
(e.g. bigram frequency clustering) of the environment to get tree structure, as
opposed to the manual techniques used for small examples. The second question
regards the proper representations for the terminal pattemns in a tree. Rather than
choose random patterns for terminals which may not reflect similarity relationships,
we have built a RAAM simulator extended with the idea of Miikkulainen & Dyer,
to let error minimization constraints flow back into the lexicon, changing the pat-
terns for terminals. Taken together, these two processes, of finding trees by struc-
wral clustering, and modifying lexical representations by contextual feedback, will
be make our work applicable to large corpora of sequential dz2-., and will automat-
cally extract syntactic structures and categorize lexical items.
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ABSTRACT

A long-standing difficulty for connectionist modeling has been how to represent
variable-sized recursive data structures, such as trees and lists, in fixed-width patterns.
This paper presents a connectionist architecture which automatically develops compact
distributed representations for such compositional structures, as well as efficient access-
ing mechanisms for them. Patterns which stand for the internal nodes of fixed-valence
trees are devised through the recursive use of back-propagation on three-layer auto-
associative encoder networks. The resulting representations are novel, in that they com-
bine apparently immiscible aspects of features, pointers, and symbol structures. They
form a bridge between the data structures necessary for high-level cognitive tasks and the

associative, pattern recognition machinery provided by neural networks.
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1. Introduction

One of the major stumbling blocks in the application of Connectionism to higher-
level cognitive tasks, such as Natural Language Processing, has been the inadequacy of
its representations. Both local and distributed representations have, thus far, been unsuit-
able for capturing the dynamically-allocated variable-sized symbolic data-structures trad-
itionally used in AL. The limitation shows in the fact that pure connectionism has gen-
erated somewhat unsatsfying systems in this domain; for example, parsers for fixed

length sentences [1-4], without embedded structures [5].1

Indeed, some of the recent attacks on connectionism have been aimed precisely at
the queston of representational adequacy. According to Minsky & Papert [10], for
example, work on neural network and other learning machines was stopped by the need
for Al to focus on knowledge representation in the 1970’s, because of the principle that
"no machine can learn to recognize X unless it possesses, at least potentially, some
scheme for representing X (p. xiii)." Fodor and Pylyshyn's [11] arguments against con-
nectionism are based on their belief that connectionist machines do not even have the
potential for representing X, where X is combinatorial (syntactic) constituent structure,

and hence cannot exhibit (semantic) "systematicity” of thought processes.

Agreeing thoroughly that compositional symbolic structures are important, in this
paper | show a connectionist architecture which can discover compact distributed
representations for them. Recursive Auto-Associative Memory (RAAM) uses back-
propagation [12] on a non-stationary environment to devise patterns which stand for all
of the internal nodes of fixed-valence trees. Further, the representations discovered are
not merely connectionist implementations of classic concatenative data structures, but are

in fact new, interesting, and potentally very useful.

The rest of this paper is organized as follows. After a background on connectionist
representational schemes, the RAAM architecture is described, and several experiments
presented. Finally, there is a discussion of the generative capacity of the architecture,

and an analysis of the new representations and their potenual applications.

! Hybnd (connectionist-symbolic) models [6-9) have the potental for more powerful
representations, but do not insist on the neural plausibuity constraints which create the limitations
in the first place.
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1.1. Background: Connectionist Representations

Normal computer programs have long used sequential data structures, such as arrays
and lists as primitives. Because of the built-in notion of "address”, moreover, the con-
tents of sequences can be the addresses of other sequences; hence it is also quite simple
for computer programs to represent and manipulate tree and graph structures as well.
Representing lists and trees is not a trivial problem for connectionist networks, however,
which do not use adjacent or randomly addressed memory cells, or permit the real-time

dynamic creation of new units.

Some of the earliest work in modern connectionism made an inappropriate analogy
between semantic networks and neural networks. The links in the former represented
logical relations between concepts. The links in the latter represented weighted paths
along which "activation energy” flowed. Needless to say, these first connectionist net-
works, in which each concept was mapped onto a single neuron-like unit, did not have

the representational capacity of their logically powerful cousins.

Furthermore, local representational schemes do not efficiently represent sequential
information. The standard approach involves converting time into space by duplicating
sub-netwbrks into a fixed set of buffers for sequential input. Both early connectionist
work, such as McClelland & Rumelhart’s word recognition model [13], as well as more
modern efforts [4,14] use this approach, which is not able to represent or process
sequences longer than a predetermined bound. One way to overcome this length limita-
tion is by "sliding" the input across the buffer [15, 16]. While such systems are capable
of processing sequences longer than the predetermined bound, they are not really

representing them.

Distributed Representations have been the focus of much research (including the
work reported herein) since the circulation of Hinton's 1984 report [17] discussing the
properties of representations in which "each entity is represented by a pattern of activity
distributed over many computing elements, and each computed element is involved in

representing many different entities.”

The most obvious and natural distributed representation is a feature (or micro-
feature) system, traditionally used in linguistcs. A good example of a connectionist
model using such a representation is Kawamoto’s work on lexical access [18]. However,

since the entire feature system is needed to represent a single concept. attempts at
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representing structures involving those concepts cannot be managed in the same system.
For example, if all the features are needed to represent a NURSE, and all the features are
needed to represent an ELEPHANT, then the attempt to represent a NURSE RIDING
ELEPHANT may come out either as a WHITE ELEPHANT or a rather LARGE
NURSE WITH FOUR LEGS.

To solve the problem of feature superpositon, one might use full-size constituent
buffers, such as Agent, Action, and Object [S]. In each buffer would reside a feature pat-
tern filling these roles such as NURSE, RIDING, and ELEPHANT. Unfortunately,
because of the dichotomy between the representation of a structure (by concatenation)
and the representation of an element of the structure (by features), this type of system
cannot represent embedded structures such as "John saw the nurse riding an elephant.” A
solution to the feature-buffer dichotomy problem was anticipated and sketched out by
Hinton [19], and involved having a "reduced description” for NURSE RIDING
ELEPHANT which would fit into the consttuent buffers along with patterns for JOHN
and SAW.

However, it was not immediately obvious how to develop such reduced descrip-
tions. Instead, avant-garde connectionist representations were based on coarse-coding
{17], which allows multiple semi-independent representational elements to be simultane-
ously present, by superpositon, in a feature vector. Once multiple elements can be

present, conventional groupings of the elements can be interpreted as larger structures.

For example, Touretzky has developed a coarse-coded memory system and used it
in a production systern [20], a primitive lisp data-structuring system called BoltzCONS
(21], and a combinadon of the two for simple tree manipulations [22]. In his representa-
tion, the 15,625 triples of 25 symbols (A-Y) are elements to be represented, and using
patterns over 2000 bits, small sets of such triples could be reliably represented. Interpret-
ing the set of triples as pseudo-CONS cells, a limited representation of sequences and

trees could be achieved.

Similarly, in their past-tense model, Rumelhart and McClelland (23] developed an
implicitly sequential representation, where a set of well-formed overlapping triples could
be interpreted as a sequence. It is instructive to view the basic idea of their representa-
tional scheme as the encoding of a sequence of tokens, (i, - - *,i,) by an unordered se¢

of overlapping subsequences (each of breadth k) of tokens:
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{(‘l- e vik)r(i21 e vik+l)v Tt v(in—k+li te ’in)}

Thus, if a coarse-coded memory can simultaneously represent a set of such subse-

quences, then it can also represent a longer sequence.

The limits of this type of representation are that the cost of the representation goes

up exponentially with its breadth, and, for any particular breadth, there may be sequences

with too much internal duplication. Sets do not count multiple occurrences of their ele-

ments. So a system, for example, which represented the spellings of words as sets of

letter-pairs would not be able to represent the word yoyo, and even if the breadth were

increased to three, the system would still not be able to represent words with duplicate

. o
triples such as banana.~

Although both Touretzky's and Rumelhart & McClelland’s coarse-coded represen-

tations were fairly successful for their circumscribed tasks, there remain some problems:

(1) A large amount of human effort was involved in the design, compression and tuning

(2)

(3)

(4)
(5

of these representations, and it is often not clear how to translate that effort across

domains.

Coarse-coding requires expensive and complex access mechanisms, such as pullout
networks [25] or clause-spaces [20].

Coarse-coded symbol memories can only simultaneously instantiate a small number
of representational elements (like triples of 25 tokens) before spurious elements are

introduced3. Furthermore, they assume that all possible tokens need to be combined.
They utilize binary codes over a large set of units (hundreds or thousands).

Their mode of aggregating larger structures out of basic elements is superpositional,
the cause of problems (2) and (3).

In contrast, the distnbuted representations devised by the RAAM architecture

demonstrate better properties:

(1)

Encodings are developed mechanically by an adaptive network.

: To point out this "Banana Problem” with Rumelhart & McClelland's actual representation,
which was phonological rather than orthographic, Pinker and Prince [24] discovered words with
enough internal duplication in the Oykangand language.

3 Rosenfeld and Touretzky [26] provide a nice analysis of coarse-coded symbol memories.
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(2) The access mechanisms are simple and deterministic.

(3) A potentially very large number of primitve elements can selectively combine into

constituent structures. Not all riples of symbols can, or need, be represented.
(#) The rcpresentations utilize real-values over few units (tens).

(5) The aggregation mode is compositional.

2. Recursive Auto-Associative Memory

The problem under attack, then, is the representation of variable-sized symbolic
sequences or trees in a numeric fixed-width form, suitable for use with association,

categorization, pattern-recognition, and other neural-style processing mechanisms.

AN

A BC D
Figure 1. Example of a binary tree.

Consider two hypothetical mechanisms which could translate, in both directions,
between symbolic trees and numeric vectors. The Compressor should encode small sets
of fixed-width patterns into single patterns of the same size. It could be recursively
applied, from the bottom up, to a fixed-valence tree with labeled terminals (leaves),
resulting in a fixed-width pattern representing the entire structure. For the binary tree
((A B)(C D)), shown in figure 1, where each of the terminals is a fixed-width pattern, this
would take three steps. First A and B would be compressed into a pattern, R;. Then C
and D would be compressed into a pattern, R,. Finally, R and R ; would be compressed
into R 3. |

The Reconstructor should decode these fixed-width patterns into facsimiles of their
parts, and determine when the parts should be further decoded. It could be recursively
applied, from the top down, resulting in a reconstruction of the original tree. Thus, for
this example, R3 would be decoded into R| and R3. R} would be decoded into A’ and
B’.and R intoC  and D",

These mechanisms are hypothetical, because it is not clear either how to physically
build or computationally simulate such devices, or what the R; patterns look like. In

answer to the first question, I just assume that the mechanisms could be built out of the
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KOUTPUT UNITS 2K QUTPUT UNITS
WHOLE | LEFT | RIGHT ]

AN

| LEFT RIGHT

2K INPUT UNITS K INPUT UNITS

Figure 2. Proposed feedforward networks for the Compressor and
Reconstructor working with binary trees.

standard modemn connectionist substrate of layered fully-connected feed-forward net-
works of semi-linear units.* For binary trees with k-bit patterns as the leaves, the
compressor could be a single-layer network with 2k inputs and k outputs. The reconstruc-

tor could be a single-layer network with k inputs and 2k outputs. Schematics for these are
shown in Figure 2.

2K QUTPUT UNITS

| LEFT | RIGHT |
3

WHOLE K HIDDEN UNITS
I}

| LEFT RIGHT |

2K INPUT UNITS

Figure 3. Single nerwork composed of both compressor and reconstructor.

In answer to the second, regarding what the patterns look like, we develop the stra-

tegy of letting a connectionist network devise its own representations. Consider

4 [ also assume that the reader is, by now, famuliar with this standard, as well as with the back-
propagation technique for adjusting weights [12}, and wiil not attempt a re-presentation of the
mathematics. The work herein does not crucially depend on the default assumptions of semi-
linearity and full-connectedness. By relying on these standard defaults, however, | hope to keep
the focus on issue of rcpresentation.
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simultaneously training these two mechanisms as a single 2k —k -2k network, as shown in

Figure 3.

This looks suspiciously like a network for the Encoder Problem [27]. Back-
propagation has been quite successful at this problem,’ when used in a self-supervised
auto-associative mode on a three layer network. The network is trained to reproduce a
set of input patterns; i.e., the input patterns are also used as desired (or target) patterns. In
learning to do so, the network develops a compressed code on the hidden units for each
of the input patterns. For example, training an 8-3-8 network to reproduce the eight 1-

bit-in-8 patterns usually results in a 3-bit binary code on the hidden units.

In order to find codes for trees, however, this auto-associative architecture must be
used recursively (hence its name). Extending the simple example from above, if A, B, C,
and D were k-bit patterns, the network could be trained to reproduce (A B), (C D), and
((A B)(C D)) as follows:

input pattern hidden pattern output pattern
(A B) - R) - (A1) By
(C. D) = Ry(1) - (C') D)
(R (1) Ra1) - R0 - R R0))

where r represents the time, or epoch, of training. Assuming that back-propagation con-
verges in the limit, the sum of the squares of the differences between the desired and

actual outputs would go to 0, and:

RRoAa o>
:"::;lu" oo
XX ogAaD»

Therefore, R, would, in fact, be a representation for the tree ((A B)(C D)), by vir-
tue of the fact that the compressor would be a deterministic algorithm which transforms
the tree to its representation, and the reconstructor a deterministic algorithm which
wansforms the representation back to the tree. Along the way, representations will also
be devised for all subtrees, in this case, (A B) and (C D). Note that, as will be

5 Rumelhan et al. [12] demonstrazéd only a 8-3-8 network, but other successful uses include a
64-16-64 network [28] and a 270-45-270 network [4). The three numbers correspond to the
number of units n the input, hidden, and output layers of a network.
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demonstrated later, this strategy works on a collection of trees just as it does on a single

ree.

(1)

There are a few details which form a bridge between theory and practce.

The (initially random) values of the hidden units, R,(¢), are used as part of the train-
ing environment. Therefore, as the weights in the network evolve, so do some of
the patterns that comprise the training environment. This form of non-stationary, or
‘‘Moving Target,’’ learning has also been explored by others [29, 30]. The stability
and convergence of the network are sensitive to the learning parameters. Following
the explication of Rumelhart et al. [12, p. 330], there are two such parameters: the
learning rate N, which controls the the gradient descent step size, and the momen-
tum o, which integrates the effects of previous steps. These parameters must be set
low enough that the change in the hidden representations does not invalidate the
decreasing error granted by the change in weights, and high enough that some
change actually takes place. In the experiments described later in this paper, n was
usually set to 0.1 (less for the larger experiments), and a to 0.3. As the learning

curve flattens out, a is slowly increased up to 0.9, following {31].

The induction relied upon is outside the mechanical framework of learning. This
induction, of global success arising from only local improvements, is similar to the
Bucket Brigade principle used in classifier systems [32]. Since the training strategy
never reconstructs the terminals from R} or R, only the fact that they are equal, in

the limit, to R; and R, allows this strategy to work.

But back-propagation cannot really run forever, and therefore, at least with use of
the standard sigmoidal activation function, it is impossible to achieve the perfect
encoding described above. So some practical way to decide when to stop training
becomes necessary. When back-propagation is used to produce binary outputs,
there is a tolerance, T, conventonally set to 0.2, such that training can stop when
every output value for every training pattern is within t of the desired bit. For non-
terminal patterns which may not be binary, however, 20% is far too permissive a
tolerance. In order to successfully reconstruct A and B (to a tolerance of t) from
R1, for example, R] must be very similar to R;. Thus, a second tolerance, v, is

used for the real-valued non-terminals, which, for the experiments below, has been
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set at 0.05.

(3) The name for this architecture, Recursive Auto-Associative Memory (RAAM),

accurately reflects that the codes developed by an auto-associative memory are
being further compressed. It does not reflect that there are actually two separate
mechanisms which happen to be simultaneously trained. These mechanisms also
require some support in the form of control and memory, but nothing beyond the

ability of simple neural networks using thresholds.

In order to encode a tree from the bottom up, the compressor needs a stack on which
to store temporary results (such as R;). In order to decode a tree from the top
down, the reconstructor also needs an external stack on which to store intermediate
parterns. Furthermore, it needs some mechanism to perform terminal testng. In the
experiments presented below, it is assumed that this terminal test is merely a thresh-
hold test for "binary-ness”, which checks that all the values of a pattern are above
1-t or below T. Alternatively, one could train a simple classifier, or use conven-
tional computer programs which test for membership in a set, or perform error

detection and correction.

2.1. Sequential RAAM

Since sequences, such as (X Y Z), can be represented as left-branching binary trees,

i.e., (NIL X) Y) Z), an alternative version of the RAAM architecture works for develop-

ing representations and Lass-In-First-Out access mechanisms for sequences.

M + L UNITS
M UNITS
[STACK | TOP |

\

/\

[STACK TP ]

M + L UNITS M UNITS

Figure 4. /nverse sequencing mechanisms in single-layered networks. The
compressor combines an m-dimensional representation for a sequence
(STACK) with a new element (TOP), returning a new m-dimensional vector;
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the reconstructor decodes it back into its components.

This architecture is in fact simpler than the mechanism for trees. Compressed
representations only have to be recirculated to one side, so they do have to be stored
externally. There is less constraint on the size of the representations as well, and a higher

dimension, M, can be assumed for the compressed patterns, than for the terminal sym-
bols, L.

Figure 4 shows the single-layer compressor and reconstructor networks for a
sequential RAAM, which, when viewed as a single network has M +L input and output
units, and M hidden units. An M-vector of numbers, €, is assumed to stand for NIL, the
empty sequence. In the experiments below, vectors of all 0.5's are chosen, which are
very unlikely ever to be generated as an intermediate state. Following the earlier logic,

when this network is trained with the patterns:

input pattern hidden pattern oulput pattern
(e X) - R, - (€W X))
(R() 1) L 0] - (R Y'()
Ry 2) - R - Ry 2°()

it is expected that, after back-propagation converges, Ry, will be a representation for the
sequence (X Y Z). Along the way, representations will also be developed for all prefixes
to the sequence, in this case, (X) and (X Y).

3. Experiments with Recursive Auto-Associative Memories

3.1. Proof of Concept

To demonstrate that RAAM actually works under practical assumptions, and that it
can discover compositional representations and simple access mechanisms, a small
sequential RAAM is presented first.

The training set consisted of the eight possible sequences of three bits. Using a
4-3-4 network and an empty pattern of (.5 .5 .5), the representations shown in Figure 5
were developed. (The representations for all the prefixes are shown as well). The net-
work has clearly developed into a wri-state shift-register, where the first feature
corresponds to the inverse of the last bit in, the second to the inverse of the next-to-last
bit, and the third to the first bit encoded.
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111 -Qo
110 00 -
101 ‘e
100 Q.
011 - 00
010 QO
001 « o[
000 Og-0O
11 -Qa
10 Odo
01 <0
00 Oe.a
1 - 00
0 dao

empty Qoo

Figure 5. Representations developed by a 4-3-4 RAAM for the complete set of
bit patterns up to length 3. Each square represents a number between 0 and |.

A shift-register, which simply concatenates bits, is a classical means for serally
constructing and accessing an obviously compositional representation. But like any finite
piece of hardware built to hold a certain number of bits, it degrades rather rapidly when
over-filled. The more interesting area to explore involves pattern spaces which have
underlying regularities, but do not depend on representing all possible combinations of
sub-patterns. It is under these conditions that an adaptive connectionist mechanism would
be expected to display more desirable properties, such as content-sensitivity and graceful

degradation.

3.2. Letter Sequences

Our second experiment involves learning to represent sequences of letters. Rather
than trying to represent all possible sequences of letters, which would certainly give rise
to another shift register, a limited subset of English words was chosen. Using an elec-
wonic spelling dictionary, those words containing only the 5 letters "B", "R", "A", "I",
and "N" were selected, and then all prefixes (like "an” and "bar") were removed, resulting

in the list below. Note that, in training, a representation is developed for every prefix:
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AIR ANA ANI BABAR BANANA
BARBARIAN BARN BIBB BIN BRAIN

BRAN BRIAR INN NAB NIB

RABBI RAIN RAN RIB

AIR sraceea0.-J0000Jece0oegeJs
ANA O0+0-o0Q+«000«0ec00«0--2000s 0+
ANl OoQ:.o«0Q00«0c00e«0e«=sCo -0
BABAR 00«00+ 0000sege0oc0-00¢
BANANA O+.QQ0«0Q0«¢o0Q00e.aQ000ece0 -0
BARBARIAN e« eQe¢ Q0000000000 « 300
BARN s eo0eegg-«0Q0oc+s0ssgaege«TTe
BIBB :+eseeegeegensecees.0ggedesggs
BIN Qeesoae0esO0e Qo «Q000C>
BRAIN o0+« -DeoQeegQQee-0«Qe«o0-Jan
BRAN O+ - +eo00 000000 e0«Je0
BRIAR 0OQ+ :000e«0op0000--0-08¢0¢CO0
INN Qeo{JO00sesceOe00ess e e e
NAB +0O0Qeo 00000 ees Qe eq: 0
NIB +000es e00O0Qess0sesegQe0an-no
RABBI «0Qs0.00-0+0+¢ 000000000
RAIN Ce0e:ap00-0«00-000s000+000
RAN Oe0eges00+0e0¢ «JOCesaQes0se
RIB +*00+««-00:0+900ececeegQaon

Figure 6. Representations developed by a 30-25-30 RAAM on letter
sequences.

Each terminal was coded as a 1-in-5 bit pattern, the empty vector, again, was all
0.5’s, and a 30-25-30 RAAM was used to encode these words. Note that both BANANA
and BARBARIAN would be troublesome for an implicit sequential representation of
breadth three. Figure 6 shows the representations for these letter sequences, and the clus-
ter diagram in Figure 7 shows that, unlike a decaying sum representation in which infor-
mation about older elements gets lost [33], this sequential representation is devoting the
most resources to keeping older elements alive. And even though there are enough
resources to build a 5-letter shift register, the network cannot take this easy solution path

because of its need to represent the 6- and 9-letter words.
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/=== > INN
- [=——— > AIR
! / \ /----> ANA
\=wmme- l \-==-=> ANI
[ /mm———— > NAB
| / \ === > NIB
\ow=m—- ( [==——- > RAIN
! / \ [ > RAN
\==eome [ \ [=——— > RIB
| \---== > RABBI
[ == > BIN
\o==== / \ === > BIBB
f [===-- > BRIAR
\====- i /=-===> BRAN
\==mm- / \----> BRAIN
\__ /m=——- > BABAR
\____ Jm——-- > BANANA
\___/==-=-> BARN
\----> BARBARIAN
Figure 7. Hierarchal clustering of the letter sequence representations.
3.2.1. Learning Well-formed Syntactic Trees
The tree (D (A N))(V (P (D N)))) might be a syntactic parse-tree for the sentence
"The little boy ran up the street”, given that the terminals D, A, N, V, and P stand respec-

tively for determiner, adjective, noun, verb, and preposition. Consider a simple context-

free grammar, where every rule expansion has exactly two constituents:

S -> NPVP|NPV
NP -> DAP|DN|NPPP
PP -> PNP
VP -> VNP |V PP
AP -> AAP|AN

Given a set of strings in the language defined by this grammar, it is easy to derive the
bracketed binary trees which will make up a wraining set. With one such set of strings, a
chart parser yielded the following set of trees:

(D (A (A(AN))))
((D NXP (D N)))
(V(DN))
(P(D(AN))
(DN) V)

((DN) (V(D (AN))))
((D (AN)) (V(P(DN))
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NP (ON) COOe - - + -0O0
(D(A(A(AN)) OO -+ - - a

(D(AN)) goQo - - - - - a

(ON)(P(DN))) O:-e----00-

VP VPON) a-a- - -0as
(VID(AN))) - -0o -0 000

(VIDN)) - -0~ -OQ-0-o

PP (P(ON)) - -O--0-0e0d
(P(O(AN)) - -0 -0 000

(AN} .0OdUog-od-

AP (A(AN)) - -00Q:- : so-
(A(A(AN)) -.0003---0-

(DN)V) cO-0d-0c0-
(ON)(V(D(AN)))) g+o+ - . -qa -
(DAAN)(V(P(DN))) -Qe+-0-0Qo-

Figure 8. Representations of all the binary irees in the training set, devised by

a 20-10-20 RAAM, manually clustered by phrase-type.

Each terminal (D A N V & P) was then represented as a 1-bit-in-5 code padded with 5
zeros. A 20-10-20 RAAM devised the representations shown in Figure 8.

> (AN)

> (DN)
[==———— > (P (DN})

/ \mmm——— > (P(D(AN)))

| [m——————— > (V(DN))

| / \ R > (V(D(AN)))

\mmm—mm | \m———m—— > (V(P(ZN)))
| [mm————— > (A(AN))
\mmmmmmem / \==memean > (A(A(AN)))

\ [om——— > (D (AN)}
\mo———— > (D(A(A(AN))))

[ommm——— > ((CN)V)

/ \m————e > ((DN) (P (DN)))

\ [m—————— > ((DN) (V(D(AN))))
\mm————— > ((D(AN)) (V(P(DN))))

Figure 9. Hierarchal clustering of the syntactic patterns.

Each wee and its representation have been labeled by the phrase type in the gram-

mar, and then sorted by tvpe. The RAAM has clearly developed a representation with
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similarity between members of the same type. For example, the third feature seems to be
clearly distinguishing sentences from non-sentences, the fifth feature almost separates
adjective phrases from others, while the tenth feature appears to distinguish prepositional
and noun phrases from the rest.® Finally, a hierarchal cluster of these patterns in Figure 9
reveals that the similarity between patterns generally follows the phrase type breakup,

and also reflects the depth of trees.

3.2.2. Learning to Represent Propositions.

Tree representations are common data structures, used for semantic as well as syn-
tactic structures. This final experiment sets up some propositional representations which

will be exploited later in the paper, and merely demonstrates that the architecture is capa-

ble of working on more than just binary trees.’

Table 1. Collection of sentences for propositional experiment.

1 Patloved Mary

2 Johnloved Pat

3 John saw a man on the hill with a telescope
4 Mary ate spaghetti with chopsticks

5 Mary ate spaghetti with meat

6 Pat ate meat

7 Patknew John loved Mary

8 Patthought John knew Mary loved John

9 Pat hoped John thought Mary ate spaghetti
10 John hit the man with a long telescope

11 Pat hoped the man with a telescope saw her
12  Pat hit the man who thought Mary loved John
13  The short man who thought he saw John saw Pat

Starting with a somewhat random collection of sentences, a RAAM was used to
devise compact representations for corresponding propositional forms. The sentences
used for training are shown in Table 1. The terminals for this RAAM are bit patterns for
the symbols which appear in these sentences minus the determiners and pronouns, plus

two new symbols: IS is used as a subject-raiser in the representations for sentences 11

and 12, while MOD is used to specify adjectives in triples.

6 By these metrics, of course, (D N)(P (D N))) is being classified as an S rather than an NP. This
is not surpnsing since, like an S, it is not being further combined.

7 Of course, binary trees of symbols (along with a disunguished NIL element) are sufficient for
arbitrary tree representations.
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Table 2. 16-bit patterns for the terminal symbols

! WORD THING HUMAN PREP ADJ
4BITS 3BITS 3BITS 2BITS

VERB
4BITS .

HILL 1000

STREET 1001
TELESCOPE
CHOPSTICKS
MEAT
SPAGHETTI

— - OO
-~ O -0

1
1
0
0

[ G G Y

MAN
JOHN
MARY

PAT

- —d s oa
- O - O

MOD
WITH
i ON

- A A
- OO0
o 4 0O

LONG
SHORT

-
- O

IS

KNEW
HOPED
THOUGHT
LOVED
HIT

ATE

| SAW

1000
1001

—h ah d b b
— b - -4 OO
—_ s OO -
- O -0 -0

Table 3. Ternary trees for propositional experiment.

OOO~NOOMAEWN -

10a
10b
1
12
13

(LOVED PAT MARY)

(LOVED JOHN PAT)

((WITH SAW TELESCOPE) JOHN (ON MAN HILL))
((WITH ATE CHOPSTICKS) MARY SPAGHETTI)

(ATE MARY (WITH SPAGHETTI MEAT))

(ATE PAT MEAT)

(KNEW PAT (LOVED JOHN MARY))

(THOUGHT PAT (KNEW JOHN (LOVED MARY JOHN)))
(HOPED PAT (THOUGHT JOHN (ATE MARY SPAGHETT!)))
((WITH HIT (MOD TELESCOPE LONG)) JOHN MAN)
(HIT JOHN (WITH MAN (MOD TELESCOPE LONG)))
(HOPED PAT (SAW (WITH MAN TELESCOPE) PAT))

(HIT PAT (1S MAN (THOUGHT MAN (LOVED MARY JOHN))))

(SAW (IS (MOD MAN SHORT) (THOUGHT MAN (SAW MAN JOHN))) PAT)

A similarity-based 16-bit binary representation was devised for the terminals, by
first dividing them into 5 classes, THING, HUMAN, PREP, ADJ, and VERB, and then

using one bit for each class along with a counter as shown in Table 2. Empty spots are all

zeros. Each sentence was manually translated into a ternary tree (except sentence 10
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(ON MAN HILL]
(MOD MAN SHORT)

(WITH MAN SCOPE)
(WITH MAN (SCOPE... |

{IS MAN (THOUGHT MAN (LOVED..}
(IS MAN (THOUGHT MAN (SAW.. ]

QOc0eCco - 0e0- 00000
0-0000cO0-0-0-000
Oo0000-000-000-0

Q0000 ' -a0aQooon0o
0-0c000-00e0-0-0
.. 000 Qe - - - - - a

(HOPED PAT (SAW..]
(HOPED PAT (THOUGHT..]

Oe:0c0-0Q--00-0-0-
--0-000-C00a- .00

(THOUGHT PAT (KNEW...]
(THOUGHT MARY (SAW __]

(THOUGHT JOHN (ATE...]

c-J-.00cC003-+-0-0
-00c0e0- -00a:- o - -
O-0-0c0- -000003- -
000-0Cco- -003- 0 - -

(THOUGHT MAN (LOVED..]
«newpaTovep.; (a0 - -Oe - 00 ¢ 0o
(KNEWJORNOVED.] [O00O - 00« - 00 -0 - -
(ovepJoun Maryy 00000000 « o - OO0
(oveomarvonww  DOOCO00000e -0 -00
wovepPaTmarvy (00O - 00O0CAOA- = - 00O
(LovEDJOMN PAT OOOCOoO0QO0-« - - Q0 -
wrerarmean [OJoQ:- e -0O000-0.-00

(ATE MARY SPAQ)

(ATE MARY (SPAQ...]
((ATE...) MARY SPAG)

coo-0-00-0o000- 00
cod 0.0 - -000000
O00-o0---0-00e00e -0

(SAW MAN JOMN)
(SAW (MAN...) PAT)

(SAW (MAN...) PAT)
((SAW...) JOHN (MAN...))

o0000-00cesQe00- -
a Da..DDD.D.gQD.
D. .. .O. .. .DDGDQQ

(HIT JOHN (MAN...))
(HIT PAT (MAN...]
((HIT...) JOHN MAN)

00g- -CO0-000-0-0
DGD CDDD -ae0
0O0-00e 000 000

J. B. Pollack

Figure 10. Representations of the ternary semantic trees in the training set,
devised by a 48-1648 RAAM, manually clustered. The symbolic trees have
been abbreviated 1o fit.

which had two readings) as shown in Table 3. This representation is meant to capture the
flavor of a recursive (ACTION AGENT OBJECT) case system. A 48-16-48 RAAM

learned to construct representations and to recursively encode and decode these trees into

their respective parts. These are again shown both pictorially (Figure 10) and clustered

(Figure 11).
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----- > (WITH HIT (MCD TELESICPEZ LONG))
=~  fe=a=- > 115 (MOD MAN SHORT) (THOUGHT MAN (SAW MAN JCHN)))
(mmm——— Jmmm——— > ({WITH SAN TELESCCPE) COHN {ON MAN HILL})
------ > (ATE MARY (NITH SPAGHETTI MEAT!)
Yemmma —__/===> (HOPED PAT (THOUGHT JCHN (ATE MAR( SPAGHETTI)))
/ \===> (HOPED PAT (SAW (WITH MAN TELESCCPE) PAT))
=== /e===> {HIT JOHN (WITH MAN (MCD TELESTOPE LONG!})
R . [wm—— __/===> (KNEW PAT (LOVED JOHN MARY)}
/=== \===> (THOUGHT PAT (KNEW JOHN {(LOVED MARY >CHN)))
\ooem \=e==| \==~> (KNEW JOHN (LOVEDC MARY JOHN))

\===> (HIT PAT (IS MAN (THOUGHT MAN (LOVED MARY JCHN))))

\____/===> (1S MAN (THOUGHT MAN (LOVED MAAY JOHN)))
\mmeww ' \__ /===> (THOUGHT JOHN (ATE MARY SPAGHETTI))
\___/===> (THOUGHT MAN (LCVED MARY JOHN) )
\===> (THOUGHT MAN (SAN MAN JOHN})
____/====> ((WITH ATE CHOPSTICKS) MARY SPAGHETTI)
/ \____/====> (ATE MARY SPAGHETTI)
\====> (ATE PAT MEAT}
/===> (WITR SAN TELESCCPE)

[ Jam—- / \===> (WITH ATE CHOPSTICKS)
. I R > (WITH SPAGHETTI MEAT)
QR ! /====> (MITH MAN (MOD TELESCOPE LONG})
[\pE—— ) ___/====> (ON MAN HILL)
\mmem \=voe/! \====> (WITH MAN TELESCOPE)
\___/===-> (MOD TELESCOPE LONG)
\====> (MOD MAN SHORT)
Jeaman > ((WITH HIT (MOD TPLESCOPY LCNG)) JOHN MAN)
___/==> (LOVED JOHN MARY)
[\pE— fe===/  \==> (LOVED PAT MARY)
P—— \===> (LOVED JOHN PAT)
[ : \====> (LOVED MARY JOHN)
: ___/===> (SAM (WITH MAN TELESCOPE) PAT)
\mwan/ \===> (SAW (IS (MOD MAN SHORT) (THOUGHT
\mmmm > (SANW MAN JOHN)

Figure 11. Hierarchal clustering of the semantic patterns

4. Discussion

4.1. Studies of Generalization

MAN

19

tSAN MAN CCHN) 1) PAT)

Perhaps the most important question about Recursive Auto-Associative Memories is

whether or not they are capable of any productive forms of generalization. If it turned

out that, as in the shift-register example, they were just memorizing the training set,

finding a convenient mapping from given structures to unassigned vertices in a high-

dimensional hypercube, then this work would ultimately be uninteresting. Luckily, this

turns out not to be the case.

It is a straightforward matter to enumerate the set of sequences or trees that a

RAAM is capable of representing, beyond the training set. Taken together, the encoder

and decoder networks form a recursive well-formedness test as follows: Take two pat-

terns for trees, encode them into a pattern for the new, higher-level, tree, and decode that
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back into the patterns for the two sub-trees. If the reconstructed subtrees are within toler-

ance, then that tree can be considered well-formed.8

Using this procedure for ree RAAMs, a program can start with the set of terminals
as the pool of well-formed patterns, and then exhaustively (or randomly) combine all
pairs, adding new well-formed patterns to the pool. For sequential RAAMs, the pool is
begun with just the pattern for the empty sequence, and a program merely attempts to
compose each terminal with each pattern in the pool, adding new prefixes to the pool as

they are found..

Running this generator over the network formed from the syntactic tree experiment
yielded 31 well-formed trees, which are shown in Table 4. Of these, the first 12 are not
really grammatical, although 8 of these seem to be based on a rule which allows two
NP’s to combine. There are three new instances of NP’s, four new VP’s, and twelve new
S’s. Clearly some sort of generativity, beyond memorization, is going on here, though
not yet in an infinite manner. At the least, new instances of the syntactic classes are

being formed by recombination of parts.

The sequential RAAM for letter sequences is quite a bit more productve. It is able
to represent about 300 new sequences of letters, of which approximately one-third are
wordlike, including names not in the electronic spelling dictionary like BRIAN, RINA,
and BARBARA. Mostly, however, the novel sequences reflect low-order letter-transition
statstics, indicating, again, that some recollective process more powerful than rote (list)
memorization but less powerful than arbitrary random-access sequential storage is taking

place.

There is also a tendency, especially by the 48-16-48 RAAM, to decode novel trees
back to existing members of the training set. For exaruple, the pattern encoded for
(THOUGHT JOHN (KNEW PAT (LOVED MARY JOHN))) is reconstucted to
(THOUGHT PAT (KNEW JOHN (LOVED MARY JOHN))), one of the original trees.

This lack of productivity is probably attributable to the problem that the input pat-
terns are foo similar; i.e., the Hamming distance between JOHN and PAT is only one bit.

But, while this RAAM was not as productive as hoped for, it was still quite systematic,

% Actually, this is a bit of a simplification, since the well-formedness test does not actually
guarantee that the pattemn for new tree can be fully decoded. If the tolerance is kept low enough,
however, the full ree will be recoverable.
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Table 4. Additional trees that can be represented by the 20-10-20 RAAM

(D A)
(VA
(VN)
(VV)
(D N) (P (D N))) N)
(O N) (P(DN))) (D (AN)))
((DN) (D N) (P(DN)) (D (AN)))
(((DN) (P (D N))) ((DN)(P(DN))))
((DN) (P(DN)) ((D(AN)) (P(DN)))
((ON) ((DN) (P (DN)) ((D(AN)) (P (DN
((D N) (P (D N))) (((DN) (P(DN)) (D (AN))))
(D N) (P (D N))) (((D N) (P (DN)) ((D(AN)) (P(DN)))

N
N
D

((D (AN)) (P (DN)))
((DN) (P (D(AN))
((D(AN)) (P (D (AN)))

(V((DN) (P (DN)))
(V((D (AN) (P (DN)))
(V((DN) (P (D (AN)))

(VD (AN) (P (D (AN)))

((DN) (V(DN)))
(D N) (P (D N))) V)
((DN) (V((DN) (P (DN))))
(ON)(P(DN:, . DN)))
(DNY (V((D (~N)) (P(DN))

((C N) (VIO N) (P (D (AN
((D'N) (P (D N)) (V(D(AN))
((DN) (V((D (AN)) (P (D(AN))))
(D N) (P (D N))) (¥ {{L N) (P(DN)))
(((D N) (P (D N))) (V((DN)(P(D(AN)))
(((DN) (P (D N))) (V((D(AN)) (P(DN))
(D N) (P(DN))) (V((D(AN) (P (D(ANM)

according to Fodor & Pylyshyn’s [11, p. 39} own definition:

What does it mean to say that thought is systematic? Well, just as you don’t
find people who can understand the sentence ‘John loves the girl’ but not the
sentence ‘the girl loves John,’ so too you don’t find people who can think the
thought that John loves the girl but can't think the think the thought that the
girl loves John.

All 16 cases of (LOVED X Y), with X and Y chosen from the set {JOHN, MARY, PAT,
MAN]} were able to be reliably represented, even though only four of them were in the

training set.
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4.1.1. Improving Generalization Capacity

The productive capacity of these systems is not yet what it should be. There ought
to be some way 10 acquire, at least theoretically, the ability to represent infinite numbers

of similar structures in such recursive distributed representations.

Given that the simplest formuladon (i.e., a 3-layer fully-connected semi-linear net-
work) using rather arbitrary training sets has shown some limited capacity in the form of
a small number of new useful representations composed out of existing constituents, it
seems likely that (1) better training environments and (2) different mathematical assump-

tions will be needed.

First, the similarity and difference relationships between terminal patterns affects
the productivity of a RAAM. In the case of the semantic triples, the fact that terminals in
the same class, like JOHN and MARY, were assigned very similar patterns, lead both to
their ability to be used systematically, and to the problem that single-bit errors in recon-
struction were damaging. On the other hand, one would expect fully random patterns to
not generalize very well either. This brings up the question of how to design compressi-
ble representations. It seems very likely that the same sort of representations devised by
a RAAM for the non-terminal patterns would lead to the best possible compression and

generalization properties if adopted for terminals.

Secondly, to achieve truly infinite representational capacity in fixed-width patterns,
1t will be necessary, at least theoretically, to consider the underlying mathematical basis
for connectionist networks, freed from the default implementational assumptions of
back-propagation, i.e., floating-point calculatons of linear combinations and sigmoids.
On the one hand, it must be considered whether or not to use real numbers at all since
they are seem biologically and computationally problematic. An unbounded number of
bits can be trivially compressed into a real number, leading to unbounded storage and
communication costs. A simulated connectionist system using real numbers might be
able to use these bits, (i.e. in very precise output values) without properly paying for
them. By using only a binary code, a system must be able to to exploit the redundancy
(i.e. sparseness or regularity) in the environment. On the other hand, it is certainly rea-
sonable, however unbiological, to assume ratdonal numbers for a competence theory. The
question to answer is whether there is a similanty-preserving mapping from compiex

structured representations to high-dimensional spatial representations.
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4.2. Analysis of the Representations

I do not yet have a prescripdon for engineering recursive distributed representa-
tions, but have a few insights into how they work. Top-down and bottom-up constraints
work together to forge the representations. The bottom-up constraint is that each pattern
is completely determined by its constituents and the knowledge eventually fixed in the
network weights: Trees with similar constituents must be similar. The top-down con-
straint is that redundant information must be compressed out of similar structures (such
as two NP’s which both can combine with the same VP): The possible siblings of a pat-
tern must be similar. Working against this drive towards similarity is the system-wide
goal of minimizing error, which serves to "constrain apart” the patterns for different trees
in the environment. The result of these pressures is that these representations consist of
at least two types of features: Categorical features, such as those identified earlier as
being able to separate classes, and disrincrive features, which vary across, and discrim-

inate between, the members of each class.

The categorical features developed by the syntactic tree experiment become clear in
examination of the of a small classifier. The patterns for each tree in the training set
were used as input to a 10-input 5-output network which was trained to discriminate the

classes NP, VP, PP, AP, and S.
Table 5. Weights of single-layer classifier network rounded to integers.

NP VP PP AP S | Strength

Bias -2 -8 -3 -4 6

1 8 0 -2 5 -4 19
2 2 -8 -3 -1 5 19
3 0 7 2 3 -9 21
4 -1 2 -5 5 -1 14
5 -5 6 -1 3 A1 16
6 -3 3 4 0 -4 14
7 -2 -1 0 -5 3 11
8 -10 10 -4 -5 2 31
9 3 0 2 2 4 11
10 4 -9 7 6 -3 29

Table 5 shows all the weights in this network, rounded to integers. The columns
correspond to the categories, and the rows correspond to the features. The bias inputs to
the category units are also shown as the first row, as are the sums of the absolute values
of the weights in each row. Looking at the column labeled NP, for example, it is clear

that the first, ninth, and tenth features strongly code for NP, while the eighth and fifth
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features code against NP. Looking at the column labeled VP, the third and eight features
code for it, and the second and tenth against.

The "strength” of each row indicates how categorical or distinctive a feature is. The
tenth feature, for example, strongly codes for NP and PP and against VP, AP, and S. The
features which do not connect strongly everywhere, like the seventh and ninth, are used
for discriminations within the categories. With regard to the binary-versus-real question
raised earlier, it seems that RAAM may build a hybrid code. Strong binary distinctions
are used for categorical judgements, while weaker analog distinctions are used for

discriminating (and labeling) members within the categories.

4.2.1. Geometric Interpretation

An alternative means of understanding these representations may come from
geometry. The terminal patterns are vertices of a k-dimensional hypercube which con-

tains all of the non-terminal patterns.

For binary trees, a RAAM is finding a consistent invertible mapping which works
the same way on composable pairs of vertices, as it does on the internal points that are
also composed. To view an image of this, a 6-3-6 RAAM was trained on the two trees
((A BXCD)) and ((AC)B D)), withA=(000),B=(100),C=010),andD=(11
0); i.e. with A, B, C, and D the four points on the "floor" of a 3-D cube.

((AC)B

Figure 12. Perspective diagram for the 3-dimensional codes developed for the
trees ((A BYC D)) and ((A CXB D)).
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Figure 12 shows a perspective plot of the 3-dimensional hypercube for the codes
developed for these two trees. If one stares long enough, taking each pair of composable
points in one’s mental left and right hands, one can see triangles falling forward as they

reduce in scale.

Saund [34] has investigated (non-recursive) auto-association as a method of dimen-
sionality reduction, and asserted that, in order to work, the map must be constrained to
form a small dimensional parametric surface in the larger dimensional space. Consider
just a 2-1-2 auto-associator. It is really an invertible mapping from certain points on the
unit square to points on the unit line. In order to work, the network might develop a
parametric 1-dimensional curve in 2-space, perhaps a set of connected splines. As more
and more points need to be encoded, this parametric curve must get ‘‘curvier’’ to cover
them. In the limit, especially if there are any dense "patches” of 2-space which need to be
covered, it can no longer be a 1-dimensional curve, but must become a space-filling
curve with a fractal dimension [35]. The nodons of associative and reconstructive

memories with fractal dimensions are further discussed elsewhere [36].

4.3. Applications

4.3.1. Associative Inference

Since RAAM can devise representations of trees as numeric vectors which then can
be attacked with the fixed-width techniques of neural networks, this work might lead to
very fast inference and structural transformation engines. The question, of course, is
whether the patterns for trees can be operated on, in a systematic fashion, without being

decoded first Below is a very simple demonstration of this possibility.

Since the RAAM for the propositional triples was able to represent all 16 cases of
(LOVED X Y), it should be possible to build an associative network which could per-
form the simple implicadon: "If (LOVED X Y) then (LOVED Y X)". This would be a
trivial shifting task if performed on an explicit concatenative representation. However,
since the (48 bit) triples are compressed into 16-dimensional pattern vectors, it is not

quite as simple a job.

The task is to find an associator which can transform the compressed representation

for each antecedent (e.g. (LOVED MARY JOHN)) into the compressed representation
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for its consequent (e.g. (LOVED JOHN MARY)). Using back-propagation, a 16-8-16
feed-forward network was trained on 12 of the 16 pairs of patterns (to within 5% toler-

ance) and was then able to successfully transform the remaining 4 pairs.

What about a system which would need to follow long chains of such implications?
There has recently been some work showing that under certain conditions, feed-forward
networks with hidden layers can compute arbitrary non-linear mappings [37-39]. There-
fore, I anticipate that the sequential application of associative inference will be able to be

compiled, at least by slow training, into fast networks of few layers.

Consider homogenous coordinate transformations (in computer graphics), where the
linear nature of the primitive operations (scaling, rotation, and translation) allows any
sequence of them to be "compiled” into a single matrix multiplication. The field of Al
has not, to date, produced any compiling methods which can rival this speedup, because
most interesting Al problems are nonlinear and most interesting Al representations are
not numeric. The point is that given suitable representations, efficient non-linear map-

ping engines could generate significant speed improvements for inferential processing.

" 4.3.2. Massively Parallel Parsing, Revisited

[ introduced this paper by noting that natural language processing posed some prob-
lems for connectionism, precisely because of the representational adequacy problem. One
cannot build either a parser or a generator without first having good "internal” representa-
tions. RAAMs can devise these compositional representations, as shown by the experi-
ment on semantic triples, which can then be used as the target patterns for recurrent net-

works which accept sequences of words as input.

A feasibility study of this concept has been performed as well, using a sequential
cascaded network [40], a higher-order network with a more restricted topology than
Sigma-Pi [41). Basically, a cascaded network consists of two subnetworks: The function
network is an ordinary feed-forward network, but its weights are dynamically computed
by the purely linear context nerwork, whose outputs determine each weight of the func-
tion net. In a sequental cascaded network, the outputs of the function network are
directly fed back to the inputs of the context network. This network is trained with

presentations of initial context, input sequences, and desired final state.
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Table 6. [0-bit input parterns for connectionist parser.

WORD CLASS | IDENTITY
JOHN 10000 | 11000
MAN 10000 | 01000
PAT 10000 | 11100
MARY 10000 | 10100

HE/HER 10000 01010
TELESCOPE | 01000 | 00101
SPAGHETTI | 01000 | 10010
CHOPSTICKS | 01000 | 00110

HILL 01000 | 01000
MEAT 01000 | 10001
ON 00100 ) 10000
WITH 00100 | 01000
WHO 00100 00100
BY 00100 ! 00010
ATE 00010 | 00100
HIT 00010 | 00010
SAW 00010 | 00001
LOVED 00010 | 00011

HOPED 00010} 01100
THOUGHT 00010 | 01010
KNEW 00010} 01001
LONG 00001 00010
SHORT 00001 | 00001

A new 10-bit similarity-based encoding was created for the words appearing in the
sentences, making HE and HER identical. The first S bits define the clags, and the second
5 bits distinguish the members. The patterns are displayed in Table 6. A scquential cas-
caded network consisting of a 10-10-16 function network and a 16-286 context network
was trained using sequences of these bit patterns corresponding to the sentences in Table
1. The inital context vectors were all zeroes, and the desired final states were the
compressed 16-dimensional representations devised by the 48-16-48 RAAM for the trees
in Table 3 (not including 10b).

This system is the closest thing yet to a barely adequate connectionist system for
processing language: Given a variable-length sequence of words, the network retumns, in
linear ume, a l6-dimensional vector, which can be decoded into a "meaning” by a

RAAM, and can perhaps be operated upon by associative inference engines.

On the one hand, this system has extreme deficiencies if it is evaluated as a cogni-
tive model. It can only produce a single tree for a sentence, and only handles a very small
corpus of sentences. The simplifying assumption, that internal representations can first

be devised and then used as target patterns, is questionable. On the other, the system has
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some very interesting aspects. Besides the fact that it runs in linear time and outputs a
compositional representation for the sentences, it automatically performs prepositional
phrase attachment (i.e., comrectly parses the ‘‘MARY ATE SPAGHETTI WITH
MEAT/CHOPSTICKS’' examples) and pronoun resolution (i.e., automatically replaces
HE or HER with the proper filler). Finally, it is the first connectionist parser which can
deal with embedded structures without resorting to external symbolic computational

power.

4.4. Further Work

There is a great deal of research still to be conducted in this area, besides the
conversion of the small feasibility studies into both falsifiable cognitive models and reli-

ably engineered artifacts. Immediate concerns include:

e Understanding the convergence and stwability properties of the "moving target"
learning strategy; both empirical and analytical studies are called for. Similarly, the
relationship between the termination condition (using t an v) and the depth capacity
of RAAM needs to be better understood..

e Developing a complete understanding of the representations and mechanisms which
are developed. A good outcome would be a general representational scheme which
could be analytically derived for a particular representational task without relying

on slow, gradient-descent learning.

5. Conclusion

Here is a conundrum for theories of human and machine learning: Which came
first, the mental procedure or the mental representation? Minsky and Papert claimed that
the representational egg must come before the procedural chicken, while Fodor and
Pylyshyn claimed to intimately know the egg and, by extension, the exclusive class of
fertile chickens. The flip side, of course, is that this perfect egg may only be layable by
an impossible chicken: A formal representational theory, specified without consideration

of its own genesis, may not be learnable by any mechanism in principle.
This work points to biologically certified way out of the dilemma: Co-Evolution.
The representations and their associated procedures develop slowly, responding to each

other’s constraints through a changing environment. The conswaint that the
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representations fit into fixed-width patterns interacts with the constraint that the patterns
must compose in certain well-formed ways, giving rise to fixed-width patterns which

capture structural similarity in spatial distance.

The RAAM architecture has been inspired by two powerful ideas. The first is due
to Hinton [42], who showed that, when properly constrained, a connectionist network can
develop semantically interpretable representations on its hiddea units. The second is an
old idea, that given a sufficiently powerful form of learning, a machine can leamn to
efficiently perform a task by example, rather than by design. Taken together, these ideas
suggest that, given a task, specified by example, which requires embedded representa-

tions, a network might be able to develop these representations itself.

It tumns out that there is no single task which requires such representations. There
have to be at least two tasks; one to construct the representations, and anothcr to access
them. On address-based machines, these tasks, such as string concatenation and array
indexing, are so computationally primitive and natural that they fall far below notice.
They are not natural to neural networks and thus need to be examined anew. Here, the
resulting task-specific mechanisms, the compressor and reconstructor, together form a
reconstructive memory system, in which only traces of the actual memory contents are

stored, and reliable facsimiles are created with the use of domain knowledge.

The systematic patterns developed by RAAM are a very new kind of representation,
a recursive, distributed representation, which seems to instantiate Hinton's notion of
the “reduced description” mentoned earlier [19]. They combine apparently immiscible
aspects of well-understood representations: They act both like feature vectors with their
fixed width and simple measures of similarity, and like pointers, so that, with simple
efficient procedures their contents can be "fetched.” Even further, they act like composi-
tional symbol structures: Simple associative procedures, such as the reconstuctor, pat-

tern classifiers, and pattern transformers, are clearly sensidve to their internal structure.

However, unlike feature vectors, these representations recursively combine into
constituent structures, according to statistically inferred well-formedness constraints.
Unlike pointers (or symbols like GOOQ7), they contain information suitable for similarity
measurements and, thus, nearest-neighbor judgements. And, unlike symbol structures,
they can be easily compared, and do not have to be taken apart in order to be worked on.

Recursive distributed representations may thus lead to a reintegration of the syntax and
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semantics at a very low level.

Currently, symbolic systems use information-free "atoms" which physically com-
bine (through bit or pointer concatenation) in a completely unrestricted fashion. Thus, for
any domain, a syntax is required to restrict those "molecules” after the fact, to the set of
semantically interpretable ones. With further work, recursive distributed representations
might undergo a metamorphism into symbols which contain their own meanings and
physically combine only in a systematic fashion. After all, real atoms and molecules do
so all the time.
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Connectionism: past, present, and
future

J].B. Pollack

Department of Computer and Information Science, The Ohio State
University.

Abstract Research efforts to studv computation and cognitive modeling
on neurallv-inspired mechanisms have come to be called Connectionism.
Rather than being brand new. it is actuallv the rebirth of a research pro-
gramme which thrived from the 40s through the 60s and then was severely
retrenched in the 70s. Connectionism is often posed as a paradigmatic
competitor to the Symbolic Processing tradition of Artificial Intelligence
(Drevfus & Dreyfus. 1988}, and, indeed, the counterpoint in the timing of
their intellectual and commercial fortunes may lead one to believe that
research in cognition is merely a zero-sum game. This paper survevs the
history of the field, often in relation to Al discusses its current successes
and failures. and makes some predictions for where it might lead in the
future.

1. Early endeavours: high hopes and hubris

Before the explosion of svmbolic artifical intelligence, there were many re-
searchers working on mathematical models of intelligence inspired by what was
known about the architecture of the brain. Under an assumption that the mind
arises out of the brain. a reasonable research path to the artificial mind was to
simulate the brain to see what kind of mind could be created. At the basis of this
programme was the assumption that neurons were the information processing
primitives of the brain, and that reasonable models of neurons connected into net-
works would suffice.

McCulloch & Pitts

The opening shot in neural network research was the 1943 paper by \Varren S.
McCullnch and Walter Pitts. [n "A logical calculus of ideas immanent in nervous
activity' they proved that anv logical expression could be 'implemented’ by an
appropriate net of simplified neurons.

Thev assumed that each ‘neuron’ was binary and had a finite threshold. that each
‘svnapse’ was either excitatory or inhibitory and caused a finite delay (of one cycle),
and that networks could be constructed with multiple svnapses between anyv pair of
nodes. In order to show that anv logical expression is computable. all that is




4 J. B Pollack

\":/ \ |
5’8
2
~
‘\C)/\; <2

Fig. 1 Louical primitives AND. OR and NOT implemented with McCulloch & Pitts neurons A
neuron tires” if it has at least two activating svnapses (arrow linkst and no inhibiting inputs 1aircls
links;

necessary is to build the functions AND, OR and NOT. Fig. 1 shows the simple net-
works which accomplish these functions. And in order to build ‘larger’ functions.
one need only glue these primitives together. For example. Fig. 2 shows a two-laver
network which computes the exclusive-or function. Continuing in this vein. one
could construct a computer by building up the functional parts. e.g. memories.
Arithmetic Logic Units (ALUs). from smaller pieces. which is exactlv how com-
puters are built.

2
7 —

Fig. 2 A two-laver McCulloch & Pitts network which computes exclusive-or as the function
A-B-A B

McCulloch and Pitts proved several theorems about equivalences ot different
processing assumptions. both for simple nets and for nets with feedback cvcles.
using a somewhat arcane svntax of temporal propositions. Since learning was not
under consideration, memory. for them. was based on "activity [which] mav be set
up in a circuit and continue reververating around it tor an indefinite period ot
time’ Thev concluded with a discussion ot Turing computabilitv. which. tor thetr
nets. required an external tape.
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Hebb

There was very little psychology in the science of neural nets. and veryv few neural
considerations in the mainly stimulus-response psvchology of the dav. In The
Organization of Behavior. Donald O. Hebb set out to rectify this situation. by
developing a phyvsiologicallv-motivated theory of psvchology.

Rejecting retlexes. Hebb put forth and defended the notion of an autonomous
central process. which intervenes between sensorv input and motor output. Of his
own work he said:

'The theorv is evidently a form of connectionism. one of the switchboard
varietv. though it does not deal in direct connections between afferent and
efferent pathwavs: not an "S-R” psvchology if R means a muscular response.
The connections serve rather to establish autonomous central activities. which
then are the basis of further learning.™

Of an incredibly rich work. Hebb is generally credited with two notions that con-
tinue to hold influence on research todav. The first is that memory is stored in con-
nections and that learning takes place by svnaptic modification:

‘Let us assume then that the persistence or repetition of a reverberatory activity
lor trace’} tends to induce lasting cellular changes that add to its stabilitv. The
assumption can be precisely stated as follows: When an axon of cell A is near
enough to excite a cell B and repeatedly or persistently takes part in firing it.
some growth process or metabolic change takes place in one or both cells such
that A’s efficiency. as one of the cells firing B. is increased."’

And the second is that neurons do not work alone. but may. through learning. be-
come organized into larger configurations. or ‘cell-assemblies’. which could thus
perform more complex information processing.

Ashby

In Design for a Brain, W. Ross Ashby laid out a methodology for studving adaptive
svstems. a class of machines to which. he asserted. the brain belongs. He set out an
ambitious program:

* | we must suppose (and the author accepts) that a real solution of our prob-

lem will enable an artificial svstem to be made that will be able, like the living
brain. to develop adaptation in its behaviour. Thus the work. if successful. will
contain {at least by implication) a specification for building an artificial brain
that will be similarlv selt-co-ordinating.*

While the work was not ‘successful’ in these terms, Ashby laid the groundwork
for research that is flourishing today. His methodology for studving dynamical svs-
tems as fields of variables over time is echoed today in the connectionist studies
which invalve time evolution of dvnamical syvstems ‘Hopfield. 1982: Smolensky.
19867 and his notion of building intelligent machines nut ot homeostatic elements
~an be seen as precursor to Klopf's 11982) work on heterostatic elements.
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Rosenblatt

Hebb's notion of svnaptic modification was not specified completely enough to be
simulated or analvzed. Frank Rosenblatt studied a simple neurallv-inspired model.
called a perceptron. for manyv vears. and summarized his work in a 1962 epic.
Principles of Neurodvnamics.

Fig. 3 An elementary perceptron. which consists of a teedtorward aetwork trom a <=t ‘reting. ot
input units (S-units) connected with fixed weights to a set of threshold units +A-Units . connecisd
with variable weights to an output unit [R-Unitsy.

Rather than using the fixed weights and thresholds and absolute inhibition of the
McCulloch-Pitts neuron. Rosenblatt's units used variable weights with relative
inhibition. A perceptron consisted of manv such units arranged into a network with
some fixed and some variable weights. Fig. 3 shows a tvpical elementary per-
ceptron. Usuallv used for pattern-recognition tasks such as object classification. an
elementary perceptron consisted of a ‘retina’ of binaryv inputs. a set ot specitic
teature detectors. and a response unit. The weights from the input to the middle
laver were fixed for an application. and the weights from the detectors to the res-
ponse unit were iteratively adjusted. The major results of Rosenblatt’s work were
procedures for adjusting these variable weights on various perceptron implemen-
tations. conditions of existence for classification solutions. and proots that these
procedures, under the right conditions. converged in finite time. One statement ot
the famous ‘perceptron convergence theorem’ from Rosenblatt is as follows:

‘Given an elementary a-perceptron. a stimulus world W, and anyv classification
C(W) for which a solution exists: let all stimuli in W occur in any sequence.
provided that each stimulus must reoccur in finite time: then beginning from
an arbitrary initial state, an error correction procedure (quantized or non-
quantized) will alwavs vield a solution to C{\V) in finite time. with all signals to
the R-unit having magnitude at least equal to an arbitrarv quantity =0."

A world consisted of a set of input patterns to the retina. and a classification was
a separation of this world into positive and negative classes. The existence ot a
guaranteed convergence procedure was very useful: the rub was that the kinds of
rlassifications for which a solution exists’ were extremely limited. As a footnote to
the somewhat incomprehensible proof of this theorem. Rosenblatt attacked a
shorter alternative proof by Sevmour Papert: an attack. we are sure. he »ventualis
regretted.
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2. Symbolic Seventies: paying the price

Manv of the early workers of the field were given to extravagant or exuberant claims
or overlyv ambitious goals. McCulloch & Pitts. for example. asserted that ‘specifi-
cation of the net would contribute all that could be achieved in {psvchology}.
Ashbv clearly overestimated the power of his homeostat. and Rosenblatt stated at a
1938 svmposium that:

[ .. ] it seems clear that the Class C perceptron introduces a new kind of in-
formation processing automaton: for the first time we have a machine which is
capable of having original ideas".”

He made other dubious claims of power for his perceptron- 1s well. which un-
doubtedly provoked a backlash. Discussions of this controversv can be found in
(Rumelhart & Zipser. 1986) or (Drevfus & Drevtus. 1988). and some interesting
perspectives on some of the personalities involved can be found in Chapter 4 ot
McCorduck (1979).

Minsky & Papert

‘I was trving to concentrate on a certain problem but was getting bored and
sleepv. Then | imagined that one of myv competitors. Professor Challenger. was
about to solve the same problem. An angry wish to frustrate Challenger then
kept me working on the problem for a while'.”

In 1969. Marvin Minsky and Sevmour Papert published Perceptrons. a tract
which sounded the deathbell for research on perceptrons and other related models.
A thoroughgoing mathematical analvsis of linear threshold functions showed the
limitations ot perceptrons both as pattern-recognition machines and as general
computational devices.

This book will probablv stand permanently as one of the most important
works in the field of connectionism. so it is important to understand some ot the
tindings of Minskyv & Papert.

First. thev defined the order of a predicate as the size of the largest conjunction in
the minimal sum-of-products logical form for that predicate {or its inverse). Thus.
while both conjunction and alternation are predicates of order 1. exclusive-or is a
predicate of order 2. The generalization ot exclusive-or to more than 2 inputs is
parity. which is not of finite order: a sum of products to represent parity of n inputs
has at least one term of size n. As a predicate of non-finite order is scaled. then.
there is no limit to the necessarv tan-in of units, and perceptrons lose their nice
aspect ot {ocality.

Using arguments of svmmetry, Minsky & Papert then showed. with their Group
Invariance Theorem. that linear threshold functions which are invariant under a
permutation group can be transformed into 4 function whose coefficients depend
anlv on the group: 4 major result is that the only linear {i.e. order 1) functions in-
variant under such transitive groups as scaling, translation and rotation are simpie
size of area measures. Attempts to use linear functions tor. say. opticai character
recognition under these transitive conditions are thus doomed to tailure.
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After a cataloguing of the orders of various geometric functions. Minskv & Papert
focused on the problems of learning. They showed that as various predicates scale.
the sizes of coefficients can grow exponentially. thus leading to svstems of im-
practical memory requirements needing unbounded cycles of a convergence pro-
cedure. As Rumelhart & Zipzer pointed out in their review of the perceptron
controversy:

'The central theme of [Perceptrons] is that parallel recognizing elements. such
as perceptrons. are beset by the same problems of scale as serial pattern recog-
nizers. Combinatorial explosion catches vou sooner or later. although some-
times in different wavs in parallel than in serial.™

Minsky & Papert worked on the problem of perceptrons for quite a long time. the
result being a boring and sleepy decade for neurally-inspired modeling.

Evervbody else

Despite the herbicidal effect of Perceptrons on neural network research funding and
the flowering of symbolic Al some research efforts continued to grow during the
70s. Neural network researchers just could not easilv publish their work in the Al
journals or conferences.

A lot of the work dealt with associative or content addressable memories. Though

bevond the scope of this history. significant developments and analyses can be

found in the works of Teuvo Kohonen (Kohonen. 1977; Kohonen et al.. 1981) and
David Willshaw (Willshaw. 1981).

Anderson et al. (1977) described experiments with a saturating linear model for
pattern association and learning called the ‘Brain-State in a Box' or BSB model.
Given the current state of the system as a vector. X (t) and a matrix of weights. WV
the next state of the svstem can be computed as the inner product between the state
and weights. bounded between —1 and 1:

N (t+1)=min(1.max(—1.X (t}+ WX (t)))

Under this svstem, the state of the svstem is alwavs within an n-dimensional
hvpercube (i.e. a "box’) centred around the origin. Anderson was able to apply a
tvpe of Hebbian associative learning rule to find weights for this svstem. BSB
models are still being used productively. for example. in the lexical access model of
{Kawamoto. 19853).

[t 15 almost impossible to quantify the huge contribution of Stephen Grossberg to
neural modeiing. The scholarly output of Grossberg and his colleagues at Boston
Cniversityv’s Center for Adaptive Svstems throughout the seventies is daunting in
its mathematical sophistication. Though no excuse. this might account for the
allegedlv poor scholarship on the part of modern connectionists:

Rumelhart & Zipser's| discussion does not. however. acknowledge that both
the levels and the interactions of a competitive learning model are incom-
patible with those of an interactive activation model (Grossberg. 1984). The
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authors likewise do not state that the particular competitive learning mode!l
which thev have primarily analvzed is identical to the model introduced and
analvsed in Grossberg (1976a. 1976b). nor that this model was consistently
embedded into an adaptive resonance model in Grossberg {1976¢) and later
developed in Grossberg (1978) to articulate the kev functional properties [of
interactive activation] which McClelland & Rumethart (1981) describe ...™

[t is. of course, possible that the Connectionism of the 80s might in the tuture be
seen as ‘Grossberg: Rediscovered'.

3. Exuberant Eighties: research reborn

Interest in connectionist modelling has been on the rise in the 1980s. Perhaps the
limits of the symbolic paradigm were beginning to show. perhaps the question of
how to program parallel computers became more relevant as their construction
became cost-effective. perhaps some agency simplyv began funding neural models.
or perhaps it was simply the ebb and flow of scientitic interest. Whatever the
reason. the rebirth is now in full swing. This section reviews some of the highlights
of recent connectionist historv.

Interactive activation

LUCSD's Center for Human Information Processing. one of the nation’'s leading cen-
ters tor cognitive science. was a staunch supporter of the svmbolic paradigm in in-
tormation-processing psvchology. With the publication of Explorations in Cog-
nition in 1974, David Rumelhart and Don Norman laid out a research programme
strictlv in line with the main elements of Al of the time. Propositions. Procedures.
Semanti®™\Networks. and Augmented Transition Networks were all used in service
of a theory of psvchology. and actual computer programs were built which sup-
ported the theory.

[n 1980, a pair of curious reports were issued from the center 'An interactive
activation model of the effects of context in perception. parts 1 and 2" by David
Rumelhart and James McClelland (McClelland & Rumelhart. 1981; Rumelhart %
McClelland. 1982). Gone was the link to mainstream Al Instead. there were
‘neuron-like’ units. communicating through spreading activation and lateral in-
hibition. Basicallv a very small model for explaining many well-known psvcho-
logical effects of letter recognition in the context of words. their interactive
activation model was one of the first high-profile successtul applications of modern
connectionism.

McClelland & Rumelhart's system. which simulated reactions to visual displavs
of words and nonwords. dealt only with 4-letter words. and was organized into
three distinct levels. word, letter, and feature. The word level contained a group of
1179 units. one for each word. the letter level contained four groups of 26 units
each. and the feature level contained four groups of 12 units each tor stvlized visual
features of letters. The svstem operated by providing input to visuai features in all
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tour letter positions: this activation caused activation in various letter units. which.
in turn. caused the activation of possible words. Each group of letter units. and the
group of word units. formed what are now called "winner-take-all’ networks. bv
being fully connected with lateral inhibition links. so that a single unit would tend
to dominate all others. Finally, the word units gave positive feedback to their cor-
responding four letter units.

Clearly in the class of programmed. as opposed to trained. neural network
models. Rumelhart & McClelland avoided the morass of individually assigning
weights bv using uniform weighting schemes for each class of links.

They also provided a justification for the constraints on their model. a justifica-
tion which neatly sidesteps anv claim of neural realitv that could open up a philo-
sophical can of worms:

"We have adopted the approach of formulating the model in terms which are
similar to the wayv in which such a process might actuallyv be carried out in a
neural or neural-like system. We do not mean to imply that the nodes in our
svstem are necessarily related to the behavior of individual neurons. We will.
however. argue that we have kept the kinds of processing involved well within
the bounds of capability for simple neural circuits.”*"

The clarion call

In 1982. Jerrv Feldman & Dana Ballard published '‘Connectionist Models and their
Properties’. a focusing paper which helped to legitimize connectionism as a
methodology for Al and cognitive science. Drawing on both their own work in
vision and related neurally-inspired models such as the Rumelhart & McClelland
work mentioned above. theyv sought to unifv several strands of research in different
fields and define (and name) the bandwagon.'' Their justifications for abandoning
svmbolic Al and taking up connectionism were fourfold. First. animal brains are
organized differently than computers. Second.

"Neurons whose basic computational speed is a few milliseconds must be made
to account for complex behaviors which are carried out in a few hundred milli-
seconds. This means that entire complex behaviors are carried out in less than
a hundred time steps.''?

Third. by studving connectionism we may learn wayvs of programming the mas-
sivelv parallel machines of the future. And. fourth. manv possible mechanisms
underlving intelligent behavior cannot be studied within the svmbolic programm-
\ng paradigm.

Feldman & Ballard painted the possibilities of parallelism with broad brush-
strokes. Using a framework which included both digital and analog computation.
theyv offered up a large bag of tricks including both primitives for constructing svs-
tems (Winner-Take-All Networks. and Conjunctive Connections) and organizing
principles to avoid the inevitable combinatorial explosion [Functional Decom-
position. Limited Precision Computation. Coding. and Tuning). Although the:r
paper was sprinkled with somewhat fanciful examples, the successtul application

w_*—-’—l—d
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of their ‘tricks' can be seen in several of the dissertations produced by their students
(Cottrell. 1985b: Sabbah. 1982: Shastri. 19853).

Hopfield nets

One of the interesting sociological aspects of the rebirth ot connectionism is that
valuable contributions are being made trom areas other than computer science and
psvchology. There are several ideas trom physics which have entered into the dis-
cussion. and perhaps the most notable contributions have come from |.]. Hopfield.
He laid out a svstem for building associative memories based on an analogy to a
well-studied physical svstem. spin glasses (Hopfield. 1982} in which he showed
that. bv using an asvnchronous and stochastic method of updating binary activation
values. local minima (as opposed to oscillations) would reliably be tound by his
method:

"Anv phvsical svstem whose dvnamics in phase space is dominated by a sub-
stantial number of locally stable states to which it is attracted can theretore be
regarded as a general content-addressable memory. The physical svstem will be
a potentially useful memoryv. if. in addition. anyv prescribed set ot states can
readilv be made the stable states of the svstem.™’

Hopfield devised a novel wav of "bulk programming’ a neural model of associa-
tive memory by viewing each memory as a local minimum for a global "energy’
function. A simple computation converted a set of memory vectors into a svm-
metric weight matrix for his networks.

In a later paper (Hopfield & Tank. 1985} he extended his technique of bulk pro-
gramming of weights to analog devices and applied it to the solution of op-
timization problems. such as the NP-complete Travelling Salesman Problem. By
designing an energy function whose local minima (or -attractor states’) cor-
responded to good circuits for a particular configuration of cities. Hoptield's net-
work could rapidly find a reasonably good solution from a random initial state. [t
should be noted that Hopfield's motivation was not to suggest the possibility that
P=X\P nor to introduce a new approximate algorithm for NP-complete problems.
but to demonstrate the usefulness of his neural networks tor the kinds ot problems
which mayv arise for 'biological computation’. and understanding of which mav
‘lead to solutions for related problems in robotics and data processing using non-
biological hardware and software’."*

Hopfield has become the svmbolic founding father of a very large and broad
phvsics-hased studv of neural networks as dvnamical svstems. which is bevond the
scope of this survey.

Born-again perceptrons

Of the extension nf perceptron learning procedures to more powerful. multilavered
svstems. Minsky & Papert said:

“We consider it to be an important resedarch problem to eiucidate for rerect) our
intuitive judgement that the extension 1s sterile. Perhaps some powertui con-
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vergence theorem will be discovered. or some protound reason for the failure to
produce an interesting 'learning theorem’ for the multilavered machine will be
found"."?

[n the past few vears. however. several techniques have appeared which seem to
hold the promise for learning in multilevel svstems. These are (1) Associative
Reward-Penalty. (2) Boltzmann Machine learning. and (3) Back Propagation.

Associative reward-penalty

Working with the goal-seeking units of Klopf (1982). Andrew Barto and colleagues
published results in 1982 on one of the first perceptron-like networks to break the
linear learning barrier (Barto et al.. 1982). Using a two-lavered feed-forward net-
work thev demonstrated a svstem which learned to navigate towards either of two
locational goals in a small landscape. They showed that in order to have done this
successfully. the svstem had to essentially learn exclusive-or. a nonlinear function.

The task was posed as a control problem for a ‘simple organism™: At anyv time t the
input to the network was a 7-element vector indirectly indicating location on a two
dimensional surface. The output of the network was 4 bits indicating which
direction to move (i.e. north. east. south or west). A reinforcement signal. broadcast
to all units. based on the before after ditference in distance from the goals. was
used o correct the wei~hts.

The network had 8 "hidden’ units interposed between the 7 input units and 4
output units. One of the factors contributing to the success of their method was that
instead of the hidden laver computing binary thresholds. as in an elementary per-
ceptron. it computed positive real numbers. thus allowing gentler gradients for
learning.

This earlv work. on a specific network with a few quirks. was subsequently
developed into a more general model of learning. the Associative Reward-Penalty
or Ag-p algorithm. See Barto (1983} for an overview of the work.

Boltzmana Maehines

Anneal -— To toughen anvthing, made brittle from the action of fire. by
exposure to continuous and slowlv diminished heat. or bv other equivalent
process.

‘You have been wasted cne moment by the vertical ravs of the sun and the next
annealed hissing hot by the salt sea sprav.”'”

Another notion from phvsics which has been ported into connectionism is
simuluted annealing. Based on the work of Kirkpatrick et ai. (1983). Ackleyv et al.
1985) Jevised an iterative connectionist network whicn relaxes into a global
minimum. As mentioned earlier. Hopfield (1982) constructed a network for as-
sociative memory (in which each memory was a local mirimum) and showed that
an asvnchronous update procedure was guaranteed to find local minima. By uti-
lizing a simulated annealing procedure, on the other hand. a Boltzmann machine
can tind 4 globar minimum.
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Given a set of units. s,. which take on binaryv values. connected with svmmetr:c
weights. w,. the overall "energy’ ot a particular configuration is:
E=-%u,s55+%8s,
1<; l
where 8, are thresholds. A local decision can be made as to whether or not a unit
should be on or otf to minimize this energy. If a unit is off (O). it contributes nothing
to the above equation. but if it is on (1). it contributes:

AE =Y w,5,-8, .

[n order to minimize the overall energy. then. a unit should turn on if its input ex-
ceeds its threshold and off otherwise.

But because of the interaction of all the units. a simple deterministic or greedv
algorithm will not work. The Boltzmann machine used a stochastic method. where
the probability of a unit's next state being on is:

1

1‘8_‘\E' T

where T is a global ‘temperature’ constant. As this temperature is lowered toward 0.
the svstem state freezes into a particular configuration:

"At high temperatures. the network will ignore small energyv differences and
will rapidlyv approach equilibrium. In doing so. it will perform a search of the
coarse overall struciure of the space of global states. and will find a good mini-
mum at that coarse level. As the temperature is lowered. it will begin to res-
pond to smaller energy difference and will find one of the better minima within
the coarse-scale minimum it discovered at high temperature.’®

To use simulated annealing as an iterative activation function. some units must
be ‘clamped’ to particular states, and a ‘schedule’ of temperatures and times is used
to drive the svstem to ‘equilibrium’. This tvpe of relaxation has been used in two
parsing models so far by Selman {1985) and Sampson (1986). and is a com-
putational primitive in the connectionist production svstem of Touretzkv & Hinton
11983).

The real beautv of the Boltzmann machine comes through in its very simple
learning rule. Given a desired set of partial states to learn and an initial set of
weights. the learning procedure. using onlv local information. can adjust the
weights interactiveiv. Bv running the annealing procedure several times while
rlamping nver the learning set and several times without anv clamping. statistical
intnrmation ahout how to change all the weights in the svstem can be gathered.
With siow annealing schedules. their procedure can learn codings tor hidden units.
thus overcoming some of the limitations of perceptrons.

The down-side of all this is that the learning algorithm is verv slow and com-
putationallv expensive. Learning a set of weights for a problem mav take only
hundreds of iterations — but each iteration. in order to collect the statistical in-
tormation. consists of several trials of simulated annealing, possibly with gentle
schedules ot thousands ot temperatures, tor each test case.
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Back-propagation

A more robust procedure for learning in multiple levels of perceptron-like units
was independently invented and reinvented by several people. In 1981, David
Parker apparentlv disclosed self-organizing logic gates to Stanford University with -
an eve towards patenting (Parker. 1985). Parker also recently discovered that Paul
Werbos developed it in a 1974 mathematics thesis from Harvard University. Yann
Le Cun (1985} described a similar procedure in French. and Rumelhart. Hinton %
Williams (1986) reported their method. finally. in English.

Perceptrons were linear threshold units in two lavers: The first laver detects a set
of features, which were hard-coded: the second laver linearlyv combined these
features and could be trained. Convergence procedures for perceptrons would onlv
work on one laver. however, which. among other problems. severly limited their
usefulness.

One explanation for whyv learning could not be extended to more than a single
laver of perceptrons is that because of the discontinuous binaryv threshold. a smali
change in a weight in one laver could cause a major disturbance for the weights in
the next.

Bv ‘relaxing from a binary to a continuous, analog threshold. then. it is possibl
to change weights slowly in multiple levels without causing anyv major dis
turbances. This is at the basis of the back-propagation technique.

Given a set of inputs. x,. a set of weights, w, and a threshold. 8. a threshoid logi
unit will return 1 if:

(Y xw,)—6>0
l
and 0 otherwise. The units used by the back-propagation procedure return:

1
B—E X,w,

i

1+e

Graphs of these two functions are depicted in Fig. 4. It can be seen that tor thj
analog case, small changes in the input [by changing weights slowly) cause cor
respondingly small changes in the output.
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Back-propagation has been used quite successtully. Sejnowski & Rosenberg
(19861} reported a text-to-speech program which was trained from phonetic data.
and Hinton (1986) showed that, under proper constraints. back-propagation can
develop semantically interpretable "hidden’ features.

[n fact. back-propagation is so widelyv being used todav. that it is threatening to
become a subtield of its own. One of the major foci of current connectionism is the
application ot back-propagation to diverse areas such as sonar (Gorman &
Sejnowski, 1988). speech (Elman & Stork. 1987). machine translation (Allen. 19871,
and the invention and investigation of numerous tweaks and twiddles to the al-
gorithm (Cater. 1987: Dahl. 1987: Stornetta & Huberman. 1987).

It is for future history to judge whether these new approaches to learning in
multiple lavers is more than a local maximum in the hill-climbing exercise known
as science.

4. Facing the future: problems and prognostications

Because of the problems to be described below. I cannot say with conviction that
connectionism will solve major problems for Artificial Intelligence in the near
future. [ do not believe that the current intense military and industrial interest in
neural networks will pav off on a grander scale than did the earlier commercializa-
tion of expert systems.

[ do believe. however. that connectionism will eventually make a great con-
tribution to Al given the chance. Its own problems need to be solved first.

Problems for connectionism

Despite the many well-known promises of connectionism. including massivelv
parallel processing. machine learning. and graceful degradation. there are manyv
limitations as well. which derive from naive applications of paradigmatic con-
straints derived from what is almost known about networks of real neurons. Manv
ot these problems only arise when connectionism is applied to higher-level cog-
nitive functions such as natural language processing and reasoning. These prob-
[ems have been described in various wavs. including: recursion. variable-binding.
and cross-talk, but thev seem to be just variations on older problems. for which
entire tfields of research have been established.

Generative capacity. Despite the promises of connectionism. the paradigmatic
assumptions lead to language processing models which are strictly finite-state.
Several parsers have been built which parse context-free grammars of bounded
iength. .. regular grammars. The term ‘generative capacity’ is due to Chomsky.
who used it as a measure of the power (capacity) of particular classes of formal
grammars to generate natural language sentences: regular grammars are the weakest
in this respect.

For example. as an adjunct to his model for word-sense disambiguation. Cottrell
(19854} proposed a tixed-structure local connectionist model for length-bounded

svitactic proeessing.
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In a well-circulated report. Fanty (1983) describes the automatic construction ot
a connectionist network which parses a context-free grammar. Essentially a time-
for-space tradeoff. his system can parse bounded-length sentences. when presented
all lexical items at once. The number of units needed for his network to parse sen-
tences of length n rises as O(n?).

Selman (1985) also reports an automatic construction for networks which can
parse bounded-length context-free grammars. His system is stochastic. and based
on the Boltzmann machine notions of Acklev et al. (1983). Again we have a
machine for sentences of bounded length. Another feature of Selman’s svstem is
that the connectionist constraint of limited processing cvcles is ignored and a parse
may take several thousand cvcles of annealing.

And even the newer crop of research in this area suffers from the same fixed-
width problem (McClelland & Kawamoto. 1986; Allen. 1987: Hanson & Kegl. 1987 .

Representational adequacy

Closely related to the problem of generative capacityv is the problem ot representa-
tional adequacy. One must be careful that a model being proposed can actuailv
represent the elements of the domain being modeled. One ot the major attacks on
connectionism has been on the inadequacy of its representations. especiallv on
their lack of compositionality (Fodor & Pyvlyshvn, 1988). In teature-based distri-
buted representations, such as the one used by Kawamoto (1983]. if the entire
feature svstem is needed to represent a single element. then attempting to represent
a structure involving those elements cannot be managed in the same svstem. For
example. if all the features are needed to represent a nurse. and all the features are
needed to represent an elephant. then the attempt to represent a nurse riding an
elephant will come out either as a white elephant or a rather large nurse with four
legs.

One obvious solution to this problem of superimposition versus concatenation
involves using separate 'pools’ of units to represent elements of propositional
triples. such as Agent. Action. and Object. In each pool would reside a distributed
representation filling these roles such as *Nurse', ‘Riding’. and 'Elephant’. Because
of the dichotomy between the representation of a structure (bv concatenation) and
the representation of an element of the structure (byv features). this tvpe of svstem
cannot represent recursive propositions such as ‘John saw the nurse riding an
elephant’.

Finallv. parallel representations of sequences which use implicit sequential
coding (such as Rumelhart & McClelland (1986) used in their perceptron-iike
model for learning the past tenses of verb) have limits representing repetitive con-
stituents. So a system, for example. which represented words as collections ot
letter-triples. would not be able to represent words with duplicate triples such as
banana.

Task control

A final problem is that many neural models use every "allowable” device thev nau e
to do a single task. this leaves no tacility for changing tasks. or even chanaing *ne
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size of tasks. except massive duplication and modification of resources. For
example. in the past-tense model (Rumelhart & McClelland. 1986). there is no
obvious means to conjugate trom. sav. past to present tense. without another
200.000 weights. In the Travelling Salesman network (Hopfield & Tank. 1985).
there is no way to add a city to the problem without configuring an entire new net-
work.

Predicting the future

The existence and recognition of these problems is slowlyv causing a change in the
direction of near-term connectionist research. There are manv ongoing efforts now
on more serial approaches to recognition and generation problems (Elman. 1983:
Gasser & Dver. 1988: Jordan. 1986: Pollack. 1987). which mav help overcome the
problem of massive duplication in dealing with time. There is aiso research in prog-
ress along the lines of Hinton's (1988) proposal for reduced descriptions as a wav
out of the superposition concatenation difficulty for distributed representations.
For example. Pollack (1988) demonstrates a reconstructive distributed memory for
variable sized trees. and Dver et al. {1988) show a network construction faor repre-
senting simple semantic networks as labelled directed graphs.

As problems in capacity. representation. and control are solved. we mayv expect a
new blooming ot connectionist applications in areas currently dominated by trad-
itional svmbolic processing.

[ believe that connectionism mav lead to an implementational redetinition of the
notion of “svmbol’. In Al. svmbols have no internal structure and thus mean verv
little: thev are just used as names for. or pointers to. larger structures of svmbols.
which are reasoned with (slowly). The essential difference between the early neural
network research and modern connectionism is that Al has happened in-between
them. Because modern connectionism reallv does focus on representations. there is
4 possibilitv that a new kind of svmbol might emerge trom connectionism. For
example. a reduced representation of some structure into a distributed pattern
could be considered such a svmbol. given that it can "point’ to a larger structure
through a reconstruction algorithm. Such "supersvmbols’ as opposed to subsvmbols
(Smolenskyv. 1988) may have an advantage over Al stvle token-svmbols. in that thev
possess internal structure which can be reasoned about.

Finallv. [ wish to make quite a tar-tetched prediction. which is that Con-
nectionism will sweep Al into the current revolution of thought in the phvsical and
hiological sciences (Crutchtield et al.. 1986: Gleick. 1987: Grebogi =t al.. 1987 Fig.
3 shows a set of disciplines which are almost communicating todav. and implies
that the snortest path between Al and chaos is quite long.

There has already been some intrusion of interest in chaos in the physics-based
study ot neural networks as dyvnamical svstems. For example. both Huberman &
Hogg 119871 and Kurten (1987) show how phase-transitions occur in particular
neural-like svstems. and Lapedes & Farber. 11988) demonstrates how 4 network

Stramned to precdict a4 simple iterated function would follow that tunction’s bitur-

catinns into chaos However, these efforts are strictly bottom-up and it is still ditti-
it <ee Dow chaos has anvthing to do with connectionism. let alone AL
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Taking a more top-down approach. consider several problems which have been
trustrating for some time. One problem is how to get intinite generative capacitv
into a svstem with finite resources li.e. the competence performance distinction;.
Another is the question of reconstructive memorv. which has only been crudelv
approximated by Al svstems {Dver. 19831. Yet another is the symbol-grounding
problem. which is how to get a symbolic svstem to touch ground in real-world per-
ception and action. when all svstéms seem to bottom out dat an a priori set of
semantic primitives.

My suspicion is that manv of these problems stem from a tacit acceptance. by
both Al researchers and connectionists. of “Aristotelian’ notions of knowledge re-
presentation. which stop at terms. features. or relations. Just as Mandelbrot claims
to have replaced the ideal integer-dimensional Euclidean geometry with a more
natural tractional dimensional itractal) geometry (Mandelbrot. 1982 so we mav ui-
timatelyv have to create a non-Aristotelian representational base.

[ have no concrete idea on what such a substrate would look like. but consider
something like the Mandelbrot set as the basis for a reconstructive memory. Nearlv
evervone has seen glossv pictures of the colourtul shapes that recurrently appear as
the location and scale are changed. Imagine an “inverse function. which. given an
underspecitied picture. quickiv returns a4 "pointer’ to a location and scale in the <et.
Reconstructing an image trom the pointer tills in the details ot the picture in a wav
consistent with the underlving self-similaritv inherent in the memorv. Given that
all the representations to be “stored’ are very similar to what appears in the set, the
ultimate etfect is to have a look-up table for an infinite set of similar representations
which incurs no memory cost for its contents. Only the pointers and the re-
construction tunction need to be stored.

While it 1s not currently teasible. [ think that approaches like this to recon-
structive memory mav also engender svstematic solutions to the other probiems. ot
finitelv regressive representations which bottom out at perception rather than it
primitives. and which give the appearance ot intinite generative capacity
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5. Conclusion

Like many svstems considered historicallv. connectionism seems to have a cvclical
nature. [t mayv well be that the current interest dies quite suddenlv due to the ap-
pearance of another critical tour-de-force such as Perceptrons. or a major accident,
sav. in a nuclear power plant controlled by neural networks. On the other hand.
some teel that Al is entering a retrenchment phase. after the business losses recently
suttered by its high-protile corporate entities and the changing ot the guard at
DARPA. Given that it doesn't all go bust. [ predict that the current limitations of
connectionism will be understood and or overcome shortlv and that. within 10
vears. ‘connectionist fractal semantics” will be a booming field.
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Abstract

Connectionist networks offer an intriguing set of techniques tor learning based
on the adjustment of weights of connections between processing units. To more
precisely identify the power and limitations of connectionist iearning, we con-
ducted a set of experunents on leaming using the mechanism of hack propagation
of corrective feedback. The experiment on learning to compute the exclusive-OR
function explores the computational efficiency of connectionist leaming and sug-
gests that the efficiency is a function of the initial conditions. The experiment on
learning to play Tic-Tac-Toe investigates the information content of what is learned
and indicates that the abulity to generalize is dependent on the environmental con-
dinons. We also provide a formal proof for the computational intractability of
learning 1n connectionust networks. These results strongly suggest that wh ' is
needed 1s a decomposition of the learning space so that network can navigate sim-
pler, smaller spaces more efticiently. The need for decomposing the leaming space

raises the 1ssue of how to search tor the nght kind ot structure. We propose that

one possibility lies in the direction of developing task-specific archutectures.

Keywords: Back propagation, computational complexity, generalization, information con-

tent, neural networksm, parallel distributed processing.




Introduction

Machine leaming has long been an important issue in Artificial Intelligence research. As early as
the mid-sixties, Samuel (Samuel, 1967) identified three central issues concerning the development
of information processing systems capable of leaming. First, the system must be able to intemally
represent what it knows and what is to be leamed: the representation problem. Second, once
incorrect performance has been detected, the system must be able to identify which part of the
system is responsible for the incorrect performance (and make modifications to achieve correct
performance): the credit assignment problem. Third. the system must be capable of generalizing
over existing abstractions in its memory: the generalization problem. In the late sixties, Minsky
and Papert (Minsky and Papert, 1988) emphasized the importance of a fourth constraint, namely,
the system must be capable of learning within a reasonable amount of time: the computational
complexity problem.

Since then, several attempts have been made at building systems that leam. Unul recent'y, these
efforts were based largely on algorithmic processes operating on discrete symbolic representations
(Carbonell ef al., 1983). This research has led to the development of several techniques for leamning
such as learning from examples, from analogies, from explanations. While this line of research has
led to the building of small-scale systems that leam more or less well in relatively narrow domains,
computationally feasible solutions to the general problem of leamning are yet to be discovered.

Recently, research on neural networks has led to the development of a different set of techniques
for learning based on the adjustment of weights of connections between processing “:nits in a “‘con-
tinuous” space. Again, these techniques have been used with some success at building small-scale
systems capable of learning relatively simple tasks in narrow domains. However. the limitations of
these techniques are not yet entirely clear. [f, for instance, a network merely memonzes the correct
solutions to the specific exemplars on which it is rained, then there would be little g priori reason
to believe that it wiil behave appropriately when presented with a novel situation. An adequate
general solution to the leaming problem must enable the system to generalize.

To more precisely identify the power and limitations of connectionist leamning, we conducted

a set of experiments on leaming using the mechanism of back propagation of corrective feedback.
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Elsewhere (Goel er al, 1988) we provided a preliminary account of the experimental results con-

cerning the credit assignment part of the leaming problem. In this paper, we describe some of the
experiments in detail, and diécuss the results in relation to the general problem of learning. First,
we present a brief review of leaming in connectionist networks. Next, we report on a set of ex-
periments on leaming to compute the exclusive-OR function. The goal of this experiment is to
determine the initial conditions under which the back propagation method can learn computation-
ally efficiently. We then report on an experiment on learning to play the game of Tic-tac-toe. The
aim of this experiment is to identify the information content of what connectionist architectures
typically learn, and the effect of environmental conditions on this leaming. We also discuss the
issue of computational complexity of learning, we provide a formal proof for the intractability of
learning in connectionist networks. Finally, we discuss potential solutions to some of the problems

of learning in connectionist networks..

Learning in Parallel Distributed Processing Networks

Neural networks come in a number of different varieties, e.g. parallel distributed processing (PDP)
(Rumelhart and McClelland, 1986a), Hopfield networks (Hopfield, 1982), and adaptive resonance
theory (Carpenter and Grossberg 87). Within the PDP framework, a number of leaming techniques
have been developed, e. g., back propagation (Rumelhart er al., 1986a), harmony theorv (Smolen-
sky. 1986) . and Boltzman machines (Hinton and Sejnowski, 1986). In this paper, we confine our
artention to the technique of back propagation; however, much of our analysis is relevant to other
connectionist learming schemes as well.

The processing units in PDP networks are organuzed in input. output. and one or more hidden
layers. The uruts in the vanous layers are connected to each other; Figure | shows the connection
between units 1 and j has a weight of w,;. The output of a unit is computed by means of a semi-
linear threshold function. A fairly common function of this class is the classic logistic function

{Rumelhart et al., 1986a):

1
0, =

1T 1 +.C-‘E. w,,0,-8)/T (l)




where 6 is the threshold of the unit, and temperature, T, regulates the slope of the function within

the critical region.

Insert Figure 1 about here.

It has been demonstrated that, at least in principle, it is possible to design connectionist net-
works that are Turing-Universal (McCulloch and Pitts, 1943: Pollack, 1987; Franklin and Garzon
1988). However, in practice, designing a connectionist network to compute a given function can
be rather difficult. The critical choices are selecting the right number of layers, the right number
of uruts for each layer, and determining how they should be connected. To see how hard designing
connectionist network can be, let us consider the design of a n input, 1 output network. Assuming
binary inputs and outputs, the network can compute up to 2*" functions, each requiring a different
weight configuration. If m is the number of connections in the network, and W is the set of possible
weights for each connection in the network, then there are {W|™ weight configurations, where W |
is the size of W. To cover the entire function space, W must contain at least 2*"/™ distinguishable
weights.'

Learning in connectionist networks takes the form of adjusting the weights of connections be-

tween the processing units in the network. The network is subjected to trairung dunng which

* 4 specific exemplar of the given task 1s presented as input to the network and the incorrect

output of the network is detected,

* a corrective feedback is supplied by the trainer and back propagated to the individual con-

'For simplicity we assume that each weight configuration specifies a unique function, however, some functions

may be specified by more than one weight configurations.




nections in the network, and

* the connection weights are changed in the direction of steepest gradient descent in the error

space.

This procedure, called back-propagation, is often expressed as the generalized delta rule (Rumel-

hart er al., 1986a), which calculates error signals at each unit of the form

Aw,~, = T]SJO,'
with
8 =(t, -0
for the output units, and
8) = E Skwk,
k

for the hidden units, where Aw,, is the change in the weight w,, of the connection from unit i to
unit j, o, is the output of the unit 1, ¢, is the correct output supplied by the trainer, o, is the output
of the network, and 1 is a constant of proportionality called the learning rate. This procedure is
executed repeatedly until some performance criteri- - ‘s met (e.g., the weights of the connections
in the network stabilize), and the network converg. . to the correct solution for specific examples
of the task. [n this manner the network is trained to correctly perform the task on a set of specific

cases selected by the trainer.

Learning to Compute XOR

The first experiment on learning 1n PDP networks we conducted was leaming to compute t+

Boolean function of two-input exclusive-OR (XOR). The goal of this experiment is to idenuty
the conditions under which back-propagation of corrective feedback using the generalized delta
rule leads to computationally efficient leaming. The XOR problem is a simple version of the more
general parity problem (Minsky and Papert, 1988) with input pattemns of size two. Rumelhant, Hin-

ton and Williams (Rumelhart et al., 1986a) have earlier reported on a PDP network that leams to




compute the XOR function. Their network consists of two units for the two inputs, an output unit
for the one output, and one hidden unit. The network learned to correctly compute XOR in a few
hundred (558) sweeps through the four stimulus pattems. This implies that starting from an initially
random set of the connection weights, it took a few thousand (558 x 4 = 2232) training sessions to
adjust the connection weights before the network leamed to compute XOR correctly.

As Minsky and Papert (Minsky and Papert, 1988) have pointed out, it is rather difficult to
analyze the meaning of these results for the general parity problem without knowing how well
the learning scheme performs on input patterns of size greater than two. In fact, it is difficult to
evaluate the computational efficiency of the leaming scheme even for input patterns of size two
since Rumelhart er a/ do not provide much of the needed information. While the learning rule is
reported to be the generalized delta rule with a leaming rate of n = 0.5, the range in which the
ininal weights of the connections can vary is not specified. A specification of the range of weights
is important since it defines the size of the parameter space which has to be navigated. Further, no
mention 1s made of whether the biases of the processing units in the network are fixed or can vary
in some range. [n shor, while one may conclude from this experiment that the network learned to
compute the XOR function correctly, it is not possible to draw any definitive conclusions about the
computational efficiency of leaming.

In order to determine the conditions under which this network learns to compute XOR effi-
ciently, we repeated the experiment of Rumelhart er a/. In our simulation, we used the same network
architecture (a schematic of the network is shown in Figure 2). The leaming rule (the generalized
delta rule) and the learning rate (n = 0.5) were also kept the same. The range of the initial weights
and the biases were 0.0 to 5.0. The simulation was performed a hundred times. the results of which
are shown in Figure 3. The z coordinate identifies the number of sessions that were required to train
the network, while the y coordinate identifies the number ot simulations (out of 100) tor which a
given number of training sessions were required. The simulations that took more than two hundred
thousand training sessions have been collapsed giving the spike at two hundred thousand sessions.
In each of the 100 simulations, the network started with a randomly generated initial set of con-

nection weights, and eventually learned the set of weights for correctly computing XOR. We note




that in a few of the simulations we were able to reproduce the results reported by Rumelhart er al.
However, for a vast majority of simulations it took the network substantially more training sessions
before it leamed to compute XOR correctly. In fact, for nearly half the simulations this took more
than two hundred thousand training sessions, two orders of magnitude higher than those reported

by Rumelhart er al.

Insert Figure 2 about here.

Insert Figure 3 about here.

The imponrtant issue is the differences between conditions under which the network leamed to
correctly compute XOR in only a few thousand training sessions, and those under which it took
4 tew hundred thousand sessions. Since the traimung procedure and learming rate are the same. it
appears that the difference lies in the initial (random) selection of connection weights. That 1s the
efficiency of the leaming scheme depends not so much on the use of the generalized delta rule, as
muc’ as on the initial choice of weights.

It could be argued that the above experiment violates the “standard” procedure of starting the

initial weights very “close” to zero (jw| < 0.3 typically) so that the slope of the output function




is large enough. In anticipation of this objection, we repeated the above experiment, this time
varying several parameters in the simulation: initial weight range, leamning rate, 1|, and momentum
rate, oe. We were interested in the number of initial weight states which did not converge to the
target function within 50000 epochs.’ During the simulation, network outputs less than or equal
to 0.49 where considered 0, while outputs greater than or equal to 0.51 were considered 1. Figure
4 illustrates the results of this experiment. In this graph, the z axis represents the range of initial
weights which were randomly generated between 0.0 and z, and the y axis represents the percentage
of initial weight configurations which did not converge in S0000 epochs. Two conclusions can be
drawn from these results. First, learmning convergence is more likely if the initial weights are very
small. Second, the graph also shows that varying the leaming rate (L) and momentum rate (M)
had little effect on the percentage of non-convergent initial weights. Similar results were obtained
when the absolute value of the initial weights were bounded by a parameter, as shown in Figure 5.

[n sum, the computational efficiency of leaming depends on initial conditions of the network.

Insert Figure 4 about here.

Insert Figure 5 about here.

*An epoch is the presentation of the entire exemplar set. In this case, an epoch consisted of four exemplars.




Learning Tic-Tac-Toe

The second problem that we have investigated is leaming to play Tic-tac-toe, the 3 x 3 board game
in which two players take turns placing distinguishable marks on the board. The goal of this experi-
ment is to identify the content of what connectionist architectures actually leamn. In Tic-tac-roe, the
player who first succeeds in capturing an entire row, column or diagonal wins the game. Against
an experienced opponent, typically the best a player can do is to achieve a stalemate. Rumelhan.
Smolensky, McClelland and Hinton (Rumelhart er al., 1986b) have earlier reported on a connec-
tionist network that leams to play Tic-tac-toe. Their network contains 67 units, including 9 input
uruts for the network s cuwrrent board positon. 9 input units for the opponent’s current position. and
9 output units for the next move by the network. There are also 40 hidden units, organized in 3
groups corresponding to the 8 ways in which an entire row, column or diagonal can be captured.
Each such group contains 3 units corresponding to the five abstractions of an empry line. friendly
singlet, friendly doublet, opponent singlet. and opponent doublet.

Once again, it is rather difficult to analyze the implications of this experiment for learning in
connectionist networks since it is not clear what has the network really leamed? What enabies
the network to select the correct move for a given board position are the information processing
abstractions of g row, opponent doublet, etc. These abstractions serve to reduce the already rela-
tively small leaming space even further, and guide the network in navigating the reduced leaming
space. In fact, it is these information processing abstractions that form a theory of how to play the
game of Tic-rtac-toe. However, the network does not leamn these abstractions. Instead. the system
designers “programmed” these abstractions into the network in “compiled” form (Chandrasekaran
etul , 1988).

The task of learning to play Tic-rac-toe would be much harder if the network lacked the above
information processing abstractions to begin with. In fact, the real test of learming would be whether
the network can leamn these abstractions. Thus, we designed a connectionist network that leamns to
play Tic-tac-toe without providing it with any of these abstractions. The network, shown in Figure

6, contains 9 input units for the network's current board position, 9 input units for the opponents




current position, and 9 output units for the next move, just as in the network of Rumelhart et a/.}

The network also contains hidden units, the number of which is kept as a parameter of the network.

Insert Figure 6 about here.

[n order to reduce the time required for a training session, we used a variation on the generalized
delta rule. For a fixed precision, the continuous and monotonic activation function degenerates to
the linear threshold function as temperature T approaches 0, as can be seen from Equation 1 (see
sectuon 1). Since the activation function is now a step function, this implies that the derivative
of the function would be 0. However. the derivative only adjusts the magnitude of the change in
the connection weights, not its direction. Thus, if the steepest gradient descent method is used for
calculating the change in connection weights but drop the derivative term from the calculations,
then the weights would be changed in the right direction but the actual distance traversed in the
error space would typically be somewhat larger. This tends to reduce the time for a training session
and also makes the back propagation less sensitive to local perturbations in the error space.

We provided a symbolic algorithm as the opponent in to the connectionist netr -rk. The sym-
bolic algorithm used the information processing abstractions that were denied to the connectionist
network. The algonthm used a simple heunstic: for any given board position. it selected the move
that would maximize the number of rows, columns, and diagonals of which it had sole posses-
sion, whule munumizing the number of rows, columns, and diagonals possessed by its opponent (the
network). s, given the same board configuration the symbolic algorithm would always gener-

ate the same move. Moreover, because of the nature of the heuristic, there existed a sequence of

’The network actually contaned an extra input unit for “symmetry breaking(Goel et al., 1988a), the need for
which anses when the board 1s empty and the network has to make the first move.

10




moves which could beat the algorithm. This made the symbolic algorithm a strong, yet imperfect,
opponent for the network.

In the training procedure we adopted, the network was first made to play the symbolic opponent,
and then learn from the moves made by the winning side. Initdally, the network played the game
by evaluating the current board position and generating a list of the moves it would like to make.
This list includes both legal and illegal moves, where an illegal move involves moving into an
already occupied square. [llegal moves were then stripped from the list, and the actval move was

* During actual play, a record was kept of the

selected (at random) from the remaining moves.
moves throughout the game. At the end of the game, the network was trained to make the same
responses to situations encountered by the victorious opponent.’ This was done by using a variation
of the generalized delta rule as described above. Thus, the network started out as a random move
generator, and then learned from its opponent each time it (the network) lost a game.

In this manner, the network played the symbolic algorithm, and leamed from it, for 10 matches,
each match consisting of a 1000 games. The results are shown in Table 1.°Each row corresponds
to a given match and contains the number of games (out of 1000) that the symbolic algorithm won,
the number that the network won, and that ended in a stalemate. (Matches were sorted by the
neural networks performance.) We found that in each of the 10 matches the network leamed to

draw its opponent in about 100 games. We also discovered that although it was possible to beat the

imperfect symbolic algorithm, in fact, the network won exactly one game out of 10,000 games.

Insert Table | about here.

*If the network suggested no moves or only illegal moves. then program randomly selected a legal move.

The network was trained to be the best of the two opponents.
®We have not provided here any details about the parameters of the network such as the learning rates, the ranges

of the connection weights and the unit biases, since the goal of this experiment was not to measure the computational

efficiency of leaming, but to investigate the content of what is leamed.




To win against the symbolic algorithm consistently would have required that the network leam
information processing abstractions such as an empry line, an opponent doublet, etc., which were
“precompiled” into the network of Rumelhart er al. However, we could detect no such abstrac-
tions despite a careful examination of the activation levels of the hidden units in the network. It
appears that the network leamed to mimic its opponent but could not generalize to the abstractions
needed to win against the opponent. The ability to generalize to abstractions is influenced by the
environmental conditions under which leaming takes place.

The ability to generalize, of course, is sensitive to the number of hidden units in the network.
Thus, if the number of hidden units is too small, the leaming problem is over-constrained and there
is not enough structure for the network to capture all the needed abstractions; and if the number 15
too large, the problem is under-constrained and generalizarion is not possible (Chandrasekaran and
Goel. 1988). For this reason, we repeated the above experiment, changing the number ot huidden
units in the network from 3 to 60 in steps of 3. While the number of games played before the
network learned to draw its opponent showed some change with change in the number of hidden

units, we observed no apparent change in the information content of what was learned.

Computational Intractability of Learning

[t has been shown that the leaming problem addressed by connectionist networks is computationally
intractable (Judd. 1987 Kolen, 1988; Blum and Rivest, 1988). For instance, Kolen (Kolen. 1988)
has demonstrated that the connectionist learning problem is computationally intractahle by showing
that any learning mechanism employed by connectionist networks can also be used to solve the
conjunctive-normal form’ (CNF) satisfiability problem which is known to be NP-complere( Cook.

1971)%.

"A conjunctive-normal form expression s a boolean expression comprised of the disjunction of conjuncuons ot
boolean vanables. [n symbolic form, AL, C,, where C, = /72, z,, where z, is a boolean variable of the negation of a

boolean vanable. For example (z; v —Z1 v 23) A (T2 V T4 v —Zs) A (21 v —Za) is CNF(Garey and Johnson, 1979).
¥Nondeterministic polynomial ime (NP) is the class of problems where guessing a solution and verifying its correct-

ness can be performed in time bounded by some polynomial function of the input size. Nondeterministic polynomial
tume complete (NP-complete) is the subset of NP problems such that all problems in NP can be reduced. in polynorual
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To illustrate the proof, consider the hypothetical network shown in Figure 7. The network con-
tains fixed and plastic weights such that the network implements the logical functions associated
with evaluation of the CNF expression and the selection of a set of satisfying variable assignments.
The network has a single input and a single output and four layers of units, where each unit performs
a linear threshold operation on its net input. The fourth layer is a single unit performing conjunction
of the third layer’s output. The third layer implements the individual sets of disjunctions used in the
expression. The second layer provides negated values for the disjunctive layer. These three levels,
consisting of all fixed weights determined by the given CNF expression, perform the evaluation of
the CNF within the network. The first layer, with plastic weights, determines the truth assignments
for the vanables of the boolean expression according to the weights on that layer. Clearly, this net-
work directly implements the CNF expression when an active input is applied to it. Satisfiabulity,
theretore, is equivalent to finding a set of weights which generate an active output to this input. As
CNF satisfiabulity is known to be NP-Complete. it follows that the problem of leaming in linear
threshold networks is also NP-Complete. Since an arbitrary network which uses a sigmoid activa-
tion function can be simulated by a network of linear threshold units, the above proof also implies

that leaming is computationally intractable for sigmoid networks as well.

Insert Figure 7 about here.

ume, to NP-complete problems. Although not proven, it1s generally believed that no polynomial ame algonthms exast
for problems in NP-complete since the number of possible solutions exponentially with the size of the input.(Garey
and Johnson, 1979)




Concluding Discussion

We suggested earlier that an information processing system capable of learning must have several

interrelated abilities.

Representational Adequacy. It must be able to represent what it knows and also what it is

to leam.

» Credit Assignment It must be able to identify its structural components which are respon-

sible for incorrect performance for a specific case of a given task.

« Structure Modification. It must be able to change its structure so that it can correctly per-

form the given task for the specific case.

« Generalization. It must be able to generalize (and specialize) what it learns to exemplar-

independent abstractions that it needs to perform a given task.

« Computational Complexity. It must be computationally efficient so that the leaming can

occur in a reasonable amount of time.

However, the experiment on learning to compute the XOR function suggests that the computa-
tional efficiency of learning in PDP networks depends not as much on the leaming procedure as on
the choice of initial weights. That is, the efficiency of leaming is dependent on the initial conditions.
Similarly, the experiment on leaming to play Tic-Tac-Toe suggests that the content of what is learned
in PDP networks is often exemplar-specific and not always generalized to exemplar-independent
abstractions (prototypes). In fact, the ability to generalize is dependent on the environmental con-
dirtons. In most connectionist networks. these generalized abstractions are explicitly embedded in
the network by the system designer rather that leamed by the system. Finally, we have shown that

the learning problem as formulated in connectionist networks is NP-Complete.
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Potential Solutions

The problems with training in PDP networks described in this paper raise two interrelated issues:
what are the causes for these problems, and what are the potential solutions for learning both effi-
ciently and effectively. First, PDP networks, (in fact, neural networks in general) are poor in their
capacity for representing knowledge. For instance, McCarthy (McCarthy, 1988) has pointed to the
“unary fixation” of connectionist representational schemes, i.e. their apparent inability to easily
represent higher-order relations. This representational poverty leads to an incapacity for general-
ization over abstractions. Recent research on distributed representations (Hinton and Sejnowski.
1986) and recursive representations (Miikkulainen and Dyer. 1988; Pollack. 1988) appears to hold
some promise in at least partially alleviating this problem.

Second, PDP networks (again, neural networks in general) typically lack built-in structure
(Feldman et al., 1988). For instance, in PDP networks, the structural components responsible
for incorrect system performance are “identified” by back propagation of corrective feedback to
individual connections in the network, and the system structure is “modified” by adjusting the con-
nection Weighs in the direction of steepest gradient descent in the error space. These two ideas are
captured in the generalized delta rule. However, the generalized delta rule is only a more general,
recursive form of hill climbing (Rumelhart et al., 1986a). The problems with the use of the hill
climbing technique for navigation of a complex search space which contains local minima are well
known (Chamiak and McDermott, 1985). What is needed is a decomposition of the learning space
so that system can navigate simpler, smaller spaces more efficiently (Chandrasekaran er al., 1988).

The need for decomposing the learning space raises the issue of how to search for the “nght”
kind of structure. One possiblity is in the direction of developing task-specific architectures. For
instance, ubductive inference(inference to the best explanation for a set of data) appears to be ubiq-
uitous in cognition. Recently, several connectionist architectures have been proposed for solving
this task (Goel et al., 1988b; Peng and Reggia, 1989; Thagard, 1989). These architectures specify
decompositions of the space of explanatory hypotheses that leads to efficient and effective naviga-

tion of the underlying problem space.
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Symbolic Neural Symbc¢ "~ Algorithm/

Algorithm Network Neural Network
Wins Wins Draws
(out of 1000) (out of 1000 (out of 1000)
Match 1 33 0 967
Match 2 54 1 945
Match 3 56 0 944
Match 4 57 0 943
Match 5 63 0 937
Match 6 85 0 915
Martch 7 277 0 723
Match 8 298 0 702
Match 9 298 0 702
Match 10 345 0 655

Table 1: Ti¢c-Tac-Toe Results
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Figure 7: The Genenc Conjuncuve-Normal Form Expression Network




